--- language: su datasets: - openslr metrics: - wer tags: - audio - automatic-speech-recognition - speech - xlsr-fine-tuning-week license: apache-2.0 model-index: - name: XLSR Wav2Vec2 Sundanese by cahya results: - task: name: Speech Recognition type: automatic-speech-recognition dataset: name: OpenSLR High quality TTS data for Sundanese type: OpenSLR args: su metrics: - name: Test WER type: wer value: 6.19 --- # Wav2Vec2-Large-XLSR-Sundanese Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) on the [OpenSLR High quality TTS data for Sundanese](https://openslr.org/44/). When using this model, make sure that your speech input is sampled at 16kHz. ## Usage The model can be used directly (without a language model) as follows: ```python import torch import torchaudio from datasets import load_dataset, load_metric, Dataset from datasets.utils.download_manager import DownloadManager from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from pathlib import Path import pandas as pd def load_dataset_sundanese(): urls = [ "https://www.openslr.org/resources/44/su_id_female.zip", "https://www.openslr.org/resources/44/su_id_male.zip" ] dm = DownloadManager() download_dirs = dm.download_and_extract(urls) data_dirs = [ Path(download_dirs[0])/"su_id_female/wavs", Path(download_dirs[1])/"su_id_male/wavs", ] filenames = [ Path(download_dirs[0])/"su_id_female/line_index.tsv", Path(download_dirs[1])/"su_id_male/line_index.tsv", ] dfs = [] dfs.append(pd.read_csv(filenames[0], sep='\t4?\t', names=["path", "sentence"])) dfs.append(pd.read_csv(filenames[1], sep='\t\t', names=["path", "sentence"])) for i, dir in enumerate(data_dirs): dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) df = pd.concat(dfs) # df = df.sample(frac=1, random_state=1).reset_index(drop=True) dataset = Dataset.from_pandas(df) dataset = dataset.remove_columns('__index_level_0__') return dataset.train_test_split(test_size=0.1, seed=1) dataset = load_dataset_sundanese() test_dataset = dataset['test'] processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset["speech"][:2], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ``` ## Evaluation The model can be evaluated as follows or using the [notebook](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb). ```python import torch import torchaudio from datasets import load_dataset, load_metric, Dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor from datasets.utils.download_manager import DownloadManager import re from pathlib import Path import pandas as pd def load_dataset_sundanese(): urls = [ "https://www.openslr.org/resources/44/su_id_female.zip", "https://www.openslr.org/resources/44/su_id_male.zip" ] dm = DownloadManager() download_dirs = dm.download_and_extract(urls) data_dirs = [ Path(download_dirs[0])/"su_id_female/wavs", Path(download_dirs[1])/"su_id_male/wavs", ] filenames = [ Path(download_dirs[0])/"su_id_female/line_index.tsv", Path(download_dirs[1])/"su_id_male/line_index.tsv", ] dfs = [] dfs.append(pd.read_csv(filenames[0], sep='\t4?\t', names=["path", "sentence"])) dfs.append(pd.read_csv(filenames[1], sep='\t\t', names=["path", "sentence"])) for i, dir in enumerate(data_dirs): dfs[i]["path"] = dfs[i].apply(lambda row: str(data_dirs[i]) + "/" + row + ".wav", axis=1) df = pd.concat(dfs) # df = df.sample(frac=1, random_state=1).reset_index(drop=True) dataset = Dataset.from_pandas(df) dataset = dataset.remove_columns('__index_level_0__') return dataset.train_test_split(test_size=0.1, seed=1) dataset = load_dataset_sundanese() test_dataset = dataset['test'] wer = load_metric("wer") processor = Wav2Vec2Processor.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") model = Wav2Vec2ForCTC.from_pretrained("cahya/wav2vec2-large-xlsr-sundanese") model.to("cuda") chars_to_ignore_regex = '[\,\?\.\!\-\;\:\"\“\%\‘\'\”_\�]' resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the aduio files as arrays def speech_file_to_array_fn(batch): batch["sentence"] = re.sub(chars_to_ignore_regex, '', batch["sentence"]).lower() speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) # Preprocessing the datasets. # We need to read the audio files as arrays def evaluate(batch): inputs = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values.to("cuda"), attention_mask=inputs.attention_mask.to("cuda")).logits pred_ids = torch.argmax(logits, dim=-1) batch["pred_strings"] = processor.batch_decode(pred_ids) return batch result = test_dataset.map(evaluate, batched=True, batch_size=8) print("WER: {:2f}".format(100 * wer.compute(predictions=result["pred_strings"], references=result["sentence"]))) ``` **Test Result**: 6.19 % ## Training [OpenSLR High quality TTS data for Sundanese](https://openslr.org/44/) was used for training. The script used for training can be found [here](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb) and to [evaluate it](https://github.com/cahya-wirawan/indonesian-speech-recognition/blob/main/XLSR_Wav2Vec2_for_Indonesian_Evaluation-Sundanese.ipynb)