caioiglesias commited on
Commit
c2cce92
·
1 Parent(s): 9917da9

Initial commit

Browse files
.gitattributes CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
35
+ replay.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - AntBulletEnv-v0
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: A2C
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: AntBulletEnv-v0
16
+ type: AntBulletEnv-v0
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 1338.12 +/- 79.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **A2C** Agent playing **AntBulletEnv-v0**
25
+ This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
a2c-AntBulletEnv-v0.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8da2f3b7697d525d50814c9929c67884bccd2fcc8e7df4e6c0a192b40538470b
3
+ size 129260
a2c-AntBulletEnv-v0/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
a2c-AntBulletEnv-v0/data ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80d82640d0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80d8264160>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80d82641f0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80d8264280>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f80d8264310>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f80d82643a0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80d8264430>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80d82644c0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f80d8264550>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80d82645e0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80d8264670>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80d8264700>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc_data object at 0x7f80d825bd80>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {
24
+ ":type:": "<class 'dict'>",
25
+ ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
26
+ "log_std_init": -2,
27
+ "ortho_init": false,
28
+ "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
29
+ "optimizer_kwargs": {
30
+ "alpha": 0.99,
31
+ "eps": 1e-05,
32
+ "weight_decay": 0
33
+ }
34
+ },
35
+ "observation_space": {
36
+ ":type:": "<class 'gym.spaces.box.Box'>",
37
+ ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
38
+ "dtype": "float32",
39
+ "_shape": [
40
+ 28
41
+ ],
42
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
43
+ "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
44
+ "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
45
+ "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
46
+ "_np_random": null
47
+ },
48
+ "action_space": {
49
+ ":type:": "<class 'gym.spaces.box.Box'>",
50
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
51
+ "dtype": "float32",
52
+ "_shape": [
53
+ 8
54
+ ],
55
+ "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
56
+ "high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
57
+ "bounded_below": "[ True True True True True True True True]",
58
+ "bounded_above": "[ True True True True True True True True]",
59
+ "_np_random": null
60
+ },
61
+ "n_envs": 4,
62
+ "num_timesteps": 2000000,
63
+ "_total_timesteps": 2000000,
64
+ "_num_timesteps_at_start": 0,
65
+ "seed": null,
66
+ "action_noise": null,
67
+ "start_time": 1677528307499076108,
68
+ "learning_rate": 0.00096,
69
+ "tensorboard_log": null,
70
+ "lr_schedule": {
71
+ ":type:": "<class 'function'>",
72
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
73
+ },
74
+ "_last_obs": {
75
+ ":type:": "<class 'numpy.ndarray'>",
76
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFAfpz+V90I/SVBfvVVlvz8iM4g/px0Av7sFiT8R28K/UzKOP34oS7uLWfs/1r/bv+bSvT/dQCK7dm6cPq/QgT/56ck/qy0BP0Ytpj4LgsG/UcEMv5aCf7811Kk/WPr0PV9Ckr+FGgU/SoybPmLOGz+qU94/FajXvKBKFj+MnWs/PnrTPm/l9z9FKfk/QsC2vz54jj+gpf28DuQTQESqsL8oKaI/P4BbP9dRZr856qs/+HfQPyYyfrvSgzU/i8mQPAwLNb7duBvAIJXPPy/jHr5fQpK/hRoFP0qMmz5izhs/jHcKP0e5NMD7L+u/fCsoPQeCi7945QC/sICqvzEKCUGK3Y4/sWwfPV/HO7/fU5i+eNPLv+NmwjxnOk4/ipBAPMoGwr/jF76/j0g1wA6DgL+HrIi/jrDxPZlTyj5FPzQ+XgpgPyUv9r9hqVLAYs4bP3QVrz8HpLM+cUe3PhLVCkD+98M/LMW5PZqMrz9TZwvAzE6OP8nmuLzi+PM/EcYZvwZOvj9wPMi8BxhSP6oIyj+m+sM/s78ev8PnKD8wIwi/CDeOv0LL1r/nDZA/PRyzvl9Ckr+FGgU/SoybPmLOGz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
77
+ },
78
+ "_last_episode_starts": {
79
+ ":type:": "<class 'numpy.ndarray'>",
80
+ ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
81
+ },
82
+ "_last_original_obs": {
83
+ ":type:": "<class 'numpy.ndarray'>",
84
+ ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC+xK81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8yfZPQAAAABk6+2/AAAAAOZ4ejoAAAAADDPZPwAAAABwjAE+AAAAABXI/z8AAAAACJUavQAAAADyCPy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9/MttwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNIR7T0AAAAAJDbuvwAAAAAJt9K9AAAAAGCW2j8AAAAAwv7xvQAAAABDXOw/AAAAAHhh4D0AAAAA3mLgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJLjH7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA36Oc9AAAAAFhv6L8AAAAAk/8GPQAAAACFIfk/AAAAANxgG70AAAAAXD7yPwAAAABRZbm9AAAAANA76b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwY+U1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx0yivAAAAAC01tm/AAAAANuoALwAAAAAthPZPwAAAAC38ji8AAAAAJtj8T8AAAAA1D6VvQAAAABHKgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
85
+ },
86
+ "_episode_num": 0,
87
+ "use_sde": true,
88
+ "sde_sample_freq": -1,
89
+ "_current_progress_remaining": 0.0,
90
+ "ep_info_buffer": {
91
+ ":type:": "<class 'collections.deque'>",
92
+ ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS6mXVsk6eMAWyUTegDjAF0lEdAqoMVhiLEUHV9lChoBkdAlRnWDtgKGGgHTegDaAhHQKqDw3PzFuN1fZQoaAZHQJJqFGXokiVoB03oA2gIR0CqhsfJV81GdX2UKGgGR0CSfntwaR6oaAdN6ANoCEdAqoiGktVaOnV9lChoBkdAmCZe4TbnHWgHTegDaAhHQKqS86e5Fw11fZQoaAZHQJgaNxWDHwRoB03oA2gIR0Cqk3zR6WxAdX2UKGgGR0CYi4m4AjptaAdN6ANoCEdAqpWIDeTFEXV9lChoBkdAlpu9adMCcWgHTegDaAhHQKqWub3Gn4x1fZQoaAZHQJa1tO0svqVoB03oA2gIR0CqnzO2JBPbdX2UKGgGR0CX72CoCMgmaAdN6ANoCEdAqp+/FYMfBHV9lChoBkdAmB6NSuQp4WgHTegDaAhHQKqiA1ndweh1fZQoaAZHQJR2FIGyHEdoB03oA2gIR0Cqo7HMt9QXdX2UKGgGR0CR+0OxSpBHaAdN6ANoCEdAqq9OrELpinV9lChoBkdAjAR+YtxuK2gHTegDaAhHQKqv2x9oexR1fZQoaAZHQJZkuay8jA1oB03oA2gIR0Cqse3gk1MudX2UKGgGR0CSCC0vGp++aAdN6ANoCEdAqrMcZgogFHV9lChoBkdAlLc7P2PDHmgHTegDaAhHQKq7ptoBaLZ1fZQoaAZHQJV5h1gYxcpoB03oA2gIR0CqvC/UWl/IdX2UKGgGR0CTO10LMLWqaAdN6ANoCEdAqr5LWuoxYnV9lChoBkdAk6kNaY/mkmgHTegDaAhHQKq/dfJmukl1fZQoaAZHQJMmY4jrzGxoB03oA2gIR0Cqy5dPtUn5dX2UKGgGR0CST6biqABlaAdN6ANoCEdAqswmmvW6LHV9lChoBkdAjbGc63iJf2gHTegDaAhHQKrOOKQaJhx1fZQoaAZHQJPWVvYODrZoB03oA2gIR0Cqz2OMl1KXdX2UKGgGR0CG9+fozN2UaAdN6ANoCEdAqtfvfhuO0nV9lChoBkdAkjsaHoHLR2gHTegDaAhHQKrYeCKaXrt1fZQoaAZHQJR0bo7muDBoB03oA2gIR0Cq2pepfhMrdX2UKGgGR0CShaYjB2wFaAdN6ANoCEdAqtvGIsRQJ3V9lChoBkdAl9d6u4gA62gHTegDaAhHQKrnXtQ9A5d1fZQoaAZHQJWay/0ulGhoB03oA2gIR0Cq6DdRrJr+dX2UKGgGR0CWr687ZFodaAdN6ANoCEdAquq9CPZIx3V9lChoBkdAlLn58fFJhGgHTegDaAhHQKrr5SMtK7J1fZQoaAZHQJQ3jo2XLNhoB03oA2gIR0Cq9Dslb/wRdX2UKGgGR0CXke349HMEaAdN6ANoCEdAqvTJzV+ZxHV9lChoBkdAlGvPbfxc3WgHTegDaAhHQKr20qRU3n91fZQoaAZHQJN8EXN1QqJoB03oA2gIR0Cq+AD9fkWAdX2UKGgGR0CJMN2xptaZaAdN6ANoCEdAqwIeNgjQiXV9lChoBkdAkxR9PLxI8WgHTegDaAhHQKsC8/wiJO51fZQoaAZHQJfvx7MPjGVoB03oA2gIR0CrBj/TCtRvdX2UKGgGR0CXWHaP0Zm7aAdN6ANoCEdAqwgAHAymAXV9lChoBkdAlr2J+DvmYGgHTegDaAhHQKsQhdYW+Gp1fZQoaAZHQJJ50J9iMHdoB03oA2gIR0CrEQ0fYBeYdX2UKGgGR0CXoPqVQhwEaAdN6ANoCEdAqxMcvXbudHV9lChoBkdAk+GxzeXRgWgHTegDaAhHQKsUSL3K0Up1fZQoaAZHQJbZcKmbb11oB03oA2gIR0CrHYoouwotdX2UKGgGR0CW/STJyQxOaAdN6ANoCEdAqx6XqZ+hG3V9lChoBkdAlF/Md5prUWgHTegDaAhHQKsitWNFSbZ1fZQoaAZHQJafrrdFfAtoB03oA2gIR0CrJOwPRRdhdX2UKGgGR0CTCRhZQpF1aAdN6ANoCEdAqzF1mcvugHV9lChoBkdAkwFMeGO+7GgHTegDaAhHQKsyDXHR1HR1fZQoaAZHQJYHIxbjcVRoB03oA2gIR0CrNCuwgTysdX2UKGgGR0CQChsQd0aIaAdN6ANoCEdAqzVfqcEvCnV9lChoBkdAlr1ScoYvWmgHTegDaAhHQKs97vLHMll1fZQoaAZHQJePrJwKjSJoB03oA2gIR0CrPnjy4FzNdX2UKGgGR0CUmh3Ux20RaAdN6ANoCEdAq0CHnZCfH3V9lChoBkdAluf3uqm0mmgHTegDaAhHQKtCDAgPmPp1fZQoaAZHQJfImKDTSb9oB03oA2gIR0CrTdh7mdRSdX2UKGgGR0CYjZX4TK1YaAdN6ANoCEdAq05eKl54W3V9lChoBkdAlomynUDuB2gHTegDaAhHQKtQcKsMiKR1fZQoaAZHQJMoiB+Wnj1oB03oA2gIR0CrUaZKFqSHdX2UKGgGR0CTxn18stkGaAdN6ANoCEdAq1oPOY6XB3V9lChoBkdAlrKVhTfixWgHTegDaAhHQKtanbzK9wp1fZQoaAZHQJblH6O5rgxoB03oA2gIR0CrXMP0yxiYdX2UKGgGR0CWqwlkH2RJaAdN6ANoCEdAq13+IRAbAHV9lChoBkdAkmXHAIppe2gHTegDaAhHQKtp+d92HL11fZQoaAZHQJDQ+ArhBJJoB03oA2gIR0CraoUhFEy+dX2UKGgGR0CTK5MTviLmaAdN6ANoCEdAq2yEsQNCq3V9lChoBkdAkhnG4Vh1DGgHTegDaAhHQKttscKgIyF1fZQoaAZHQJPnaXRgJC1oB03oA2gIR0CrdiJJPIn0dX2UKGgGR0CWG+fE4vOAaAdN6ANoCEdAq3avZCfHxXV9lChoBkdAk7oomois4mgHTegDaAhHQKt4vTYukDZ1fZQoaAZHQJNy0r9VFQVoB03oA2gIR0CreeFGXokidX2UKGgGR0CWIjPwNLDiaAdN6ANoCEdAq4SiPbO/tnV9lChoBkdAkvwzpcHGCWgHTegDaAhHQKuFfUONHYp1fZQoaAZHQJVd2ZTho/RoB03oA2gIR0CriIpLM9r5dX2UKGgGR0CQ9E/echC/aAdN6ANoCEdAq4mz7di2D3V9lChoBkdAk6yrJSzgM2gHTegDaAhHQKuSDradtl91fZQoaAZHQJXrzDJlrdpoB03oA2gIR0CrkpdZid8RdX2UKGgGR0CZ+oyzollcaAdN6ANoCEdAq5SfP5YYBXV9lChoBkdAlqpUpEx7A2gHTegDaAhHQKuV0Zc9nsd1fZQoaAZHQJCdohnrY5FoB03oA2gIR0Crn3e4LCvYdX2UKGgGR0CVowX2ugYhaAdN6ANoCEdAq6BDGipNsXV9lChoBkdAlesJ+2E0zmgHTegDaAhHQKujczGgi/x1fZQoaAZHQJW/1VBD5TJoB03oA2gIR0CrpUKGcnVodX2UKGgGR0CTISlqrR0EaAdN6ANoCEdAq65DvsqrinV9lChoBkdAlZC65PM0QGgHTegDaAhHQKuuzYywfQt1fZQoaAZHQJZWWgGr0atoB03oA2gIR0CrsOSn+AEudX2UKGgGR0CWEKv8qFyraAdN6ANoCEdAq7IU4rBj4HV9lChoBkdAi0TO5J9RaWgHTegDaAhHQKu6tmYBvJl1fZQoaAZHQJNz/xaxHG1oB03oA2gIR0Cru49KdxyXdX2UKGgGR0CVVvIJqqOtaAdN6ANoCEdAq76f668QI3V9lChoBkdAiDKnj6vaDmgHTegDaAhHQKvAa5I6Kcd1fZQoaAZHQJRGlp5/smhoB03oA2gIR0CryofSYw7DdX2UKGgGR0CVB5IlMRHxaAdN6ANoCEdAq8sNfeDWb3V9lChoBkdAkwulBQemvWgHTegDaAhHQKvNHQswtap1fZQoaAZHQJPoFshxHXpoB03oA2gIR0CrzkmTC+DfdX2UKGgGR0CX7WKziS7oaAdN6ANoCEdAq9bfD1oQF3V9lChoBkdAl86yEL6UJWgHTegDaAhHQKvXa9FF2FF1fZQoaAZHQJUiB/SYw7FoB03oA2gIR0Cr2aS6DoQndX2UKGgGR0CXToGWldkbaAdN6ANoCEdAq9tqLqD9O3VlLg=="
93
+ },
94
+ "ep_success_buffer": {
95
+ ":type:": "<class 'collections.deque'>",
96
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
97
+ },
98
+ "_n_updates": 62500,
99
+ "n_steps": 8,
100
+ "gamma": 0.99,
101
+ "gae_lambda": 0.9,
102
+ "ent_coef": 0.0,
103
+ "vf_coef": 0.4,
104
+ "max_grad_norm": 0.5,
105
+ "normalize_advantage": false
106
+ }
a2c-AntBulletEnv-v0/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bda1288e2314529c1170f1058aa934ff87ea77ec5bde150eae85563773ae454e
3
+ size 56190
a2c-AntBulletEnv-v0/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83e86f207f64d6bea035c5472394e4fa4f7d4764eb987948fd035b1cd3cfbde6
3
+ size 56958
a2c-AntBulletEnv-v0/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
a2c-AntBulletEnv-v0/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
2
+ - Python: 3.8.10
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1+cu116
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Gym: 0.21.0
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f80d82640d0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f80d8264160>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f80d82641f0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f80d8264280>", "_build": "<function ActorCriticPolicy._build at 0x7f80d8264310>", "forward": "<function ActorCriticPolicy.forward at 0x7f80d82643a0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f80d8264430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f80d82644c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f80d8264550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f80d82645e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f80d8264670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f80d8264700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f80d825bd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677528307499076108, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAFAfpz+V90I/SVBfvVVlvz8iM4g/px0Av7sFiT8R28K/UzKOP34oS7uLWfs/1r/bv+bSvT/dQCK7dm6cPq/QgT/56ck/qy0BP0Ytpj4LgsG/UcEMv5aCf7811Kk/WPr0PV9Ckr+FGgU/SoybPmLOGz+qU94/FajXvKBKFj+MnWs/PnrTPm/l9z9FKfk/QsC2vz54jj+gpf28DuQTQESqsL8oKaI/P4BbP9dRZr856qs/+HfQPyYyfrvSgzU/i8mQPAwLNb7duBvAIJXPPy/jHr5fQpK/hRoFP0qMmz5izhs/jHcKP0e5NMD7L+u/fCsoPQeCi7945QC/sICqvzEKCUGK3Y4/sWwfPV/HO7/fU5i+eNPLv+NmwjxnOk4/ipBAPMoGwr/jF76/j0g1wA6DgL+HrIi/jrDxPZlTyj5FPzQ+XgpgPyUv9r9hqVLAYs4bP3QVrz8HpLM+cUe3PhLVCkD+98M/LMW5PZqMrz9TZwvAzE6OP8nmuLzi+PM/EcYZvwZOvj9wPMi8BxhSP6oIyj+m+sM/s78ev8PnKD8wIwi/CDeOv0LL1r/nDZA/PRyzvl9Ckr+FGgU/SoybPmLOGz+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAC+xK81AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA8yfZPQAAAABk6+2/AAAAAOZ4ejoAAAAADDPZPwAAAABwjAE+AAAAABXI/z8AAAAACJUavQAAAADyCPy/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA9/MttwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgNIR7T0AAAAAJDbuvwAAAAAJt9K9AAAAAGCW2j8AAAAAwv7xvQAAAABDXOw/AAAAAHhh4D0AAAAA3mLgvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJLjH7UAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIA36Oc9AAAAAFhv6L8AAAAAk/8GPQAAAACFIfk/AAAAANxgG70AAAAAXD7yPwAAAABRZbm9AAAAANA76b8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAwY+U1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAx0yivAAAAAC01tm/AAAAANuoALwAAAAAthPZPwAAAAC38ji8AAAAAJtj8T8AAAAA1D6VvQAAAABHKgHAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJS6mXVsk6eMAWyUTegDjAF0lEdAqoMVhiLEUHV9lChoBkdAlRnWDtgKGGgHTegDaAhHQKqDw3PzFuN1fZQoaAZHQJJqFGXokiVoB03oA2gIR0CqhsfJV81GdX2UKGgGR0CSfntwaR6oaAdN6ANoCEdAqoiGktVaOnV9lChoBkdAmCZe4TbnHWgHTegDaAhHQKqS86e5Fw11fZQoaAZHQJgaNxWDHwRoB03oA2gIR0Cqk3zR6WxAdX2UKGgGR0CYi4m4AjptaAdN6ANoCEdAqpWIDeTFEXV9lChoBkdAlpu9adMCcWgHTegDaAhHQKqWub3Gn4x1fZQoaAZHQJa1tO0svqVoB03oA2gIR0CqnzO2JBPbdX2UKGgGR0CX72CoCMgmaAdN6ANoCEdAqp+/FYMfBHV9lChoBkdAmB6NSuQp4WgHTegDaAhHQKqiA1ndweh1fZQoaAZHQJR2FIGyHEdoB03oA2gIR0Cqo7HMt9QXdX2UKGgGR0CR+0OxSpBHaAdN6ANoCEdAqq9OrELpinV9lChoBkdAjAR+YtxuK2gHTegDaAhHQKqv2x9oexR1fZQoaAZHQJZkuay8jA1oB03oA2gIR0Cqse3gk1MudX2UKGgGR0CSCC0vGp++aAdN6ANoCEdAqrMcZgogFHV9lChoBkdAlLc7P2PDHmgHTegDaAhHQKq7ptoBaLZ1fZQoaAZHQJV5h1gYxcpoB03oA2gIR0CqvC/UWl/IdX2UKGgGR0CTO10LMLWqaAdN6ANoCEdAqr5LWuoxYnV9lChoBkdAk6kNaY/mkmgHTegDaAhHQKq/dfJmukl1fZQoaAZHQJMmY4jrzGxoB03oA2gIR0Cqy5dPtUn5dX2UKGgGR0CST6biqABlaAdN6ANoCEdAqswmmvW6LHV9lChoBkdAjbGc63iJf2gHTegDaAhHQKrOOKQaJhx1fZQoaAZHQJPWVvYODrZoB03oA2gIR0Cqz2OMl1KXdX2UKGgGR0CG9+fozN2UaAdN6ANoCEdAqtfvfhuO0nV9lChoBkdAkjsaHoHLR2gHTegDaAhHQKrYeCKaXrt1fZQoaAZHQJR0bo7muDBoB03oA2gIR0Cq2pepfhMrdX2UKGgGR0CShaYjB2wFaAdN6ANoCEdAqtvGIsRQJ3V9lChoBkdAl9d6u4gA62gHTegDaAhHQKrnXtQ9A5d1fZQoaAZHQJWay/0ulGhoB03oA2gIR0Cq6DdRrJr+dX2UKGgGR0CWr687ZFodaAdN6ANoCEdAquq9CPZIx3V9lChoBkdAlLn58fFJhGgHTegDaAhHQKrr5SMtK7J1fZQoaAZHQJQ3jo2XLNhoB03oA2gIR0Cq9Dslb/wRdX2UKGgGR0CXke349HMEaAdN6ANoCEdAqvTJzV+ZxHV9lChoBkdAlGvPbfxc3WgHTegDaAhHQKr20qRU3n91fZQoaAZHQJN8EXN1QqJoB03oA2gIR0Cq+AD9fkWAdX2UKGgGR0CJMN2xptaZaAdN6ANoCEdAqwIeNgjQiXV9lChoBkdAkxR9PLxI8WgHTegDaAhHQKsC8/wiJO51fZQoaAZHQJfvx7MPjGVoB03oA2gIR0CrBj/TCtRvdX2UKGgGR0CXWHaP0Zm7aAdN6ANoCEdAqwgAHAymAXV9lChoBkdAlr2J+DvmYGgHTegDaAhHQKsQhdYW+Gp1fZQoaAZHQJJ50J9iMHdoB03oA2gIR0CrEQ0fYBeYdX2UKGgGR0CXoPqVQhwEaAdN6ANoCEdAqxMcvXbudHV9lChoBkdAk+GxzeXRgWgHTegDaAhHQKsUSL3K0Up1fZQoaAZHQJbZcKmbb11oB03oA2gIR0CrHYoouwotdX2UKGgGR0CW/STJyQxOaAdN6ANoCEdAqx6XqZ+hG3V9lChoBkdAlF/Md5prUWgHTegDaAhHQKsitWNFSbZ1fZQoaAZHQJafrrdFfAtoB03oA2gIR0CrJOwPRRdhdX2UKGgGR0CTCRhZQpF1aAdN6ANoCEdAqzF1mcvugHV9lChoBkdAkwFMeGO+7GgHTegDaAhHQKsyDXHR1HR1fZQoaAZHQJYHIxbjcVRoB03oA2gIR0CrNCuwgTysdX2UKGgGR0CQChsQd0aIaAdN6ANoCEdAqzVfqcEvCnV9lChoBkdAlr1ScoYvWmgHTegDaAhHQKs97vLHMll1fZQoaAZHQJePrJwKjSJoB03oA2gIR0CrPnjy4FzNdX2UKGgGR0CUmh3Ux20RaAdN6ANoCEdAq0CHnZCfH3V9lChoBkdAluf3uqm0mmgHTegDaAhHQKtCDAgPmPp1fZQoaAZHQJfImKDTSb9oB03oA2gIR0CrTdh7mdRSdX2UKGgGR0CYjZX4TK1YaAdN6ANoCEdAq05eKl54W3V9lChoBkdAlomynUDuB2gHTegDaAhHQKtQcKsMiKR1fZQoaAZHQJMoiB+Wnj1oB03oA2gIR0CrUaZKFqSHdX2UKGgGR0CTxn18stkGaAdN6ANoCEdAq1oPOY6XB3V9lChoBkdAlrKVhTfixWgHTegDaAhHQKtanbzK9wp1fZQoaAZHQJblH6O5rgxoB03oA2gIR0CrXMP0yxiYdX2UKGgGR0CWqwlkH2RJaAdN6ANoCEdAq13+IRAbAHV9lChoBkdAkmXHAIppe2gHTegDaAhHQKtp+d92HL11fZQoaAZHQJDQ+ArhBJJoB03oA2gIR0CraoUhFEy+dX2UKGgGR0CTK5MTviLmaAdN6ANoCEdAq2yEsQNCq3V9lChoBkdAkhnG4Vh1DGgHTegDaAhHQKttscKgIyF1fZQoaAZHQJPnaXRgJC1oB03oA2gIR0CrdiJJPIn0dX2UKGgGR0CWG+fE4vOAaAdN6ANoCEdAq3avZCfHxXV9lChoBkdAk7oomois4mgHTegDaAhHQKt4vTYukDZ1fZQoaAZHQJNy0r9VFQVoB03oA2gIR0CreeFGXokidX2UKGgGR0CWIjPwNLDiaAdN6ANoCEdAq4SiPbO/tnV9lChoBkdAkvwzpcHGCWgHTegDaAhHQKuFfUONHYp1fZQoaAZHQJVd2ZTho/RoB03oA2gIR0CriIpLM9r5dX2UKGgGR0CQ9E/echC/aAdN6ANoCEdAq4mz7di2D3V9lChoBkdAk6yrJSzgM2gHTegDaAhHQKuSDradtl91fZQoaAZHQJXrzDJlrdpoB03oA2gIR0CrkpdZid8RdX2UKGgGR0CZ+oyzollcaAdN6ANoCEdAq5SfP5YYBXV9lChoBkdAlqpUpEx7A2gHTegDaAhHQKuV0Zc9nsd1fZQoaAZHQJCdohnrY5FoB03oA2gIR0Crn3e4LCvYdX2UKGgGR0CVowX2ugYhaAdN6ANoCEdAq6BDGipNsXV9lChoBkdAlesJ+2E0zmgHTegDaAhHQKujczGgi/x1fZQoaAZHQJW/1VBD5TJoB03oA2gIR0CrpUKGcnVodX2UKGgGR0CTISlqrR0EaAdN6ANoCEdAq65DvsqrinV9lChoBkdAlZC65PM0QGgHTegDaAhHQKuuzYywfQt1fZQoaAZHQJZWWgGr0atoB03oA2gIR0CrsOSn+AEudX2UKGgGR0CWEKv8qFyraAdN6ANoCEdAq7IU4rBj4HV9lChoBkdAi0TO5J9RaWgHTegDaAhHQKu6tmYBvJl1fZQoaAZHQJNz/xaxHG1oB03oA2gIR0Cru49KdxyXdX2UKGgGR0CVVvIJqqOtaAdN6ANoCEdAq76f668QI3V9lChoBkdAiDKnj6vaDmgHTegDaAhHQKvAa5I6Kcd1fZQoaAZHQJRGlp5/smhoB03oA2gIR0CryofSYw7DdX2UKGgGR0CVB5IlMRHxaAdN6ANoCEdAq8sNfeDWb3V9lChoBkdAkwulBQemvWgHTegDaAhHQKvNHQswtap1fZQoaAZHQJPoFshxHXpoB03oA2gIR0CrzkmTC+DfdX2UKGgGR0CX7WKziS7oaAdN6ANoCEdAq9bfD1oQF3V9lChoBkdAl86yEL6UJWgHTegDaAhHQKvXa9FF2FF1fZQoaAZHQJUiB/SYw7FoB03oA2gIR0Cr2aS6DoQndX2UKGgGR0CXToGWldkbaAdN6ANoCEdAq9tqLqD9O3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9dc24b300258d08eda187a3e227ccf75ada2a4b161eeb2b1db813dfe6c9f8c68
3
+ size 1072443
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 1338.115817317029, "std_reward": 79.76190977509314, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-27T21:12:12.764514"}
vec_normalize.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:658c0c1ca258dde023d763d82749bbd99a3c0e4e780ca646193eb805329d1fb9
3
+ size 2136