Upload 2 files
Browse files- config.json +3 -12
- modeling_clip.py +129 -0
config.json
CHANGED
@@ -4,17 +4,14 @@
|
|
4 |
"architectures": [
|
5 |
"OpenCLIPVisionTextDualEncoderModel"
|
6 |
],
|
|
|
|
|
|
|
7 |
"logit_scale_init_value": 2.6592,
|
8 |
"model_type": "vision-text-dual-encoder",
|
9 |
"projection_dim": 512,
|
10 |
"text_config": {
|
11 |
"_name_or_path": "xlm-roberta-base",
|
12 |
-
"adapters": {
|
13 |
-
"adapters": {},
|
14 |
-
"config_map": {},
|
15 |
-
"fusion_config_map": {},
|
16 |
-
"fusions": {}
|
17 |
-
},
|
18 |
"add_cross_attention": false,
|
19 |
"architectures": [
|
20 |
"XLMRobertaForMaskedLM"
|
@@ -99,12 +96,6 @@
|
|
99 |
"transformers_version": null,
|
100 |
"vision_config": {
|
101 |
"_name_or_path": "",
|
102 |
-
"adapters": {
|
103 |
-
"adapters": {},
|
104 |
-
"config_map": {},
|
105 |
-
"fusion_config_map": {},
|
106 |
-
"fusions": {}
|
107 |
-
},
|
108 |
"add_cross_attention": false,
|
109 |
"architectures": null,
|
110 |
"attention_dropout": 0.0,
|
|
|
4 |
"architectures": [
|
5 |
"OpenCLIPVisionTextDualEncoderModel"
|
6 |
],
|
7 |
+
"auto_map": {
|
8 |
+
"AutoModel": "modeling_clip.OpenCLIPVisionTextDualEncoderModel"
|
9 |
+
},
|
10 |
"logit_scale_init_value": 2.6592,
|
11 |
"model_type": "vision-text-dual-encoder",
|
12 |
"projection_dim": 512,
|
13 |
"text_config": {
|
14 |
"_name_or_path": "xlm-roberta-base",
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
"add_cross_attention": false,
|
16 |
"architectures": [
|
17 |
"XLMRobertaForMaskedLM"
|
|
|
96 |
"transformers_version": null,
|
97 |
"vision_config": {
|
98 |
"_name_or_path": "",
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
"add_cross_attention": false,
|
100 |
"architectures": null,
|
101 |
"attention_dropout": 0.0,
|
modeling_clip.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional, Tuple, Union
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
from transformers import PreTrainedModel, VisionTextDualEncoderConfig, VisionTextDualEncoderModel
|
6 |
+
from transformers.models.vision_text_dual_encoder.modeling_vision_text_dual_encoder import clip_loss, CLIPOutput
|
7 |
+
|
8 |
+
|
9 |
+
class MeanPooler(nn.Module):
|
10 |
+
"""Mean pooling"""
|
11 |
+
|
12 |
+
def forward(self, x, attention_mask):
|
13 |
+
masked_output = x.last_hidden_state * attention_mask.unsqueeze(-1)
|
14 |
+
return masked_output.sum(dim=1) / attention_mask.sum(-1, keepdim=True)
|
15 |
+
|
16 |
+
|
17 |
+
class OpenCLIPVisionTextDualEncoderModel(VisionTextDualEncoderModel):
|
18 |
+
def __init__(
|
19 |
+
self,
|
20 |
+
config: Optional[VisionTextDualEncoderConfig] = None,
|
21 |
+
vision_model: Optional[PreTrainedModel] = None,
|
22 |
+
text_model: Optional[PreTrainedModel] = None,
|
23 |
+
add_text_model_pooling_layer: bool = False,
|
24 |
+
):
|
25 |
+
super().__init__(config, vision_model, text_model)
|
26 |
+
|
27 |
+
# Remove text pooling layer
|
28 |
+
if not add_text_model_pooling_layer:
|
29 |
+
self.text_model.pooler = None
|
30 |
+
|
31 |
+
# Add mean pooling
|
32 |
+
self.pooler = MeanPooler()
|
33 |
+
# Overwrite text projection
|
34 |
+
hidden_size = (self.text_embed_dim + self.projection_dim) // 2
|
35 |
+
self.text_projection = nn.Sequential(
|
36 |
+
nn.Linear(self.text_embed_dim, hidden_size, bias=False),
|
37 |
+
nn.GELU(),
|
38 |
+
nn.Linear(hidden_size, self.projection_dim, bias=False),
|
39 |
+
)
|
40 |
+
|
41 |
+
def get_text_features(
|
42 |
+
self,
|
43 |
+
input_ids=None,
|
44 |
+
attention_mask=None,
|
45 |
+
position_ids=None,
|
46 |
+
token_type_ids=None,
|
47 |
+
output_attentions=None,
|
48 |
+
output_hidden_states=None,
|
49 |
+
return_dict=None,
|
50 |
+
):
|
51 |
+
text_outputs = self.text_model(
|
52 |
+
input_ids=input_ids,
|
53 |
+
attention_mask=attention_mask,
|
54 |
+
position_ids=position_ids,
|
55 |
+
token_type_ids=token_type_ids,
|
56 |
+
output_attentions=output_attentions,
|
57 |
+
output_hidden_states=output_hidden_states,
|
58 |
+
return_dict=return_dict,
|
59 |
+
)
|
60 |
+
|
61 |
+
pooled_output = self.pooler(text_outputs, attention_mask)
|
62 |
+
text_features = self.text_projection(pooled_output)
|
63 |
+
|
64 |
+
return text_features
|
65 |
+
|
66 |
+
def forward(
|
67 |
+
self,
|
68 |
+
input_ids: Optional[torch.LongTensor] = None,
|
69 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
70 |
+
attention_mask: Optional[torch.Tensor] = None,
|
71 |
+
position_ids: Optional[torch.LongTensor] = None,
|
72 |
+
return_loss: Optional[bool] = None,
|
73 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
74 |
+
output_attentions: Optional[bool] = None,
|
75 |
+
output_hidden_states: Optional[bool] = None,
|
76 |
+
return_dict: Optional[bool] = None,
|
77 |
+
) -> Union[Tuple[torch.Tensor], CLIPOutput]:
|
78 |
+
|
79 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
80 |
+
|
81 |
+
vision_outputs = self.vision_model(
|
82 |
+
pixel_values=pixel_values,
|
83 |
+
output_attentions=output_attentions,
|
84 |
+
output_hidden_states=output_hidden_states,
|
85 |
+
return_dict=return_dict,
|
86 |
+
)
|
87 |
+
|
88 |
+
text_outputs = self.text_model(
|
89 |
+
input_ids=input_ids,
|
90 |
+
attention_mask=attention_mask,
|
91 |
+
token_type_ids=token_type_ids,
|
92 |
+
position_ids=position_ids,
|
93 |
+
output_attentions=output_attentions,
|
94 |
+
output_hidden_states=output_hidden_states,
|
95 |
+
return_dict=return_dict,
|
96 |
+
)
|
97 |
+
|
98 |
+
image_embeds = vision_outputs[1] # pooler_output
|
99 |
+
image_embeds = self.visual_projection(image_embeds)
|
100 |
+
|
101 |
+
pooled_output = self.pooler(text_outputs, attention_mask)
|
102 |
+
text_embeds = self.text_projection(pooled_output)
|
103 |
+
|
104 |
+
# normalized features
|
105 |
+
image_embeds = image_embeds / image_embeds.norm(dim=-1, keepdim=True)
|
106 |
+
text_embeds = text_embeds / text_embeds.norm(dim=-1, keepdim=True)
|
107 |
+
|
108 |
+
# cosine similarity as logits
|
109 |
+
logit_scale = self.logit_scale.exp()
|
110 |
+
logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
|
111 |
+
logits_per_image = logits_per_text.T
|
112 |
+
|
113 |
+
loss = None
|
114 |
+
if return_loss:
|
115 |
+
loss = clip_loss(logits_per_text)
|
116 |
+
|
117 |
+
if not return_dict:
|
118 |
+
output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
|
119 |
+
return ((loss,) + output) if loss is not None else output
|
120 |
+
|
121 |
+
return CLIPOutput(
|
122 |
+
loss=loss,
|
123 |
+
logits_per_image=logits_per_image,
|
124 |
+
logits_per_text=logits_per_text,
|
125 |
+
text_embeds=text_embeds,
|
126 |
+
image_embeds=image_embeds,
|
127 |
+
text_model_output=text_outputs,
|
128 |
+
vision_model_output=vision_outputs,
|
129 |
+
)
|