--- language: - en license: mit datasets: - cardiffnlp/super_tweeteval pipeline_tag: text-classification --- # cardiffnlp/twitter-roberta-base-emotion-latest This is a RoBERTa-base model trained on 154M tweets until the end of December 2022 and finetuned for emotion classification (multilabel classification) on the _TweetEmotion_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval). The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m). ## Labels "id2label": { "0": "anger", "1": "anticipation", "2": "disgust", "3": "fear", "4": "joy", "5": "love", "6": "optimism", "7": "pessimism", "8": "sadness", "9": "surprise", "10": "trust" } ## Example ```python from transformers import pipeline text= "@user it also helps that the majority of NFL coaching is inept. Some of Bill O'Brien's play calling was wow, ! #GOPATS" pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-base-emotion-latest", return_all_scores=True) predictions = pipe(text)[0] predictions = [x for x in predictions if x['score'] > 0.5] predictions >> [{'label': 'anger', 'score': 0.8713036775588989}, {'label': 'disgust', 'score': 0.7899409532546997}, {'label': 'joy', 'score': 0.9664386510848999}, {'label': 'optimism', 'score': 0.6123248934745789}] ``` ## Citation Information Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model. ```bibtex @inproceedings{antypas2023supertweeteval, title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research}, author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados}, booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023}, year={2023} } ```