--- tags: - generated_from_keras_callback model-index: - name: twitter-roberta-base-emotion-multilabel-latest results: [] pipeline_tag: text-classification language: - en --- # twitter-roberta-base-emotion-multilabel-latest This model is a fine-tuned version of [cardiffnlp/twitter-roberta-base-2022-154m](https://huggingface.co/cardiffnlp/twitter-roberta-base-2022-154m) on the [`SemEval 2018 - Task 1 Affect in Tweets`](https://aclanthology.org/S18-1001/) `(subtask: E-c / multilabel classification)`. ## Performance Following metrics are achieved on the test split: - F1 (micro): 0.7169 - F1 (macro): 0.5464 - Jaccard Index (samples): 0.5970: ### Usage #### 1. [tweetnlp](https://pypi.org/project/tweetnlp/) Install tweetnlp via pip. ```shell pip install tweetnlp ``` Load the model in python. ```python import tweetnlp model = tweetnlp.load_model('topic_classification', model_name='cardiffnlp/twitter-roberta-base-emotion-multilabel-latest') model.predict("I bet everything will work out in the end :)") >> {'label': ['joy', 'optimism']} ``` #### 2. pipeline ```shell pip install -U tensorflow==2.10 ``` ```python from transformers import pipeline pipe = pipeline("text-classification", model="cardiffnlp/twitter-roberta-base-emotion-multilabel-latest", return_all_scores=True) pipe("I bet everything will work out in the end :)") >> [[{'label': 'anger', 'score': 0.018903767690062523}, {'label': 'anticipation', 'score': 0.28172484040260315}, {'label': 'disgust', 'score': 0.011607927270233631}, {'label': 'fear', 'score': 0.036411102861166}, {'label': 'joy', 'score': 0.8812029361724854}, {'label': 'love', 'score': 0.09591569006443024}, {'label': 'optimism', 'score': 0.9810988306999207}, {'label': 'pessimism', 'score': 0.016823478043079376}, {'label': 'sadness', 'score': 0.01889917254447937}, {'label': 'surprise', 'score': 0.02702752873301506}, {'label': 'trust', 'score': 0.4155798852443695}]] ``` ### Reference ``` @inproceedings{camacho-collados-etal-2022-tweetnlp, title={{T}weet{NLP}: {C}utting-{E}dge {N}atural {L}anguage {P}rocessing for {S}ocial {M}edia}, author={Camacho-Collados, Jose and Rezaee, Kiamehr and Riahi, Talayeh and Ushio, Asahi and Loureiro, Daniel and Antypas, Dimosthenis and Boisson, Joanne and Espinosa-Anke, Luis and Liu, Fangyu and Mart{\'\i}nez-C{\'a}mara, Eugenio and others}, booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing: System Demonstrations", month = nov, year = "2022", address = "Abu Dhabi, U.A.E.", publisher = "Association for Computational Linguistics", } ```