File size: 1,676 Bytes
f6a1aff
f20e282
 
f6a1aff
 
 
 
 
27de190
f6a1aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27de190
f6a1aff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
---
language:
- en
license: mit
datasets:
- cardiffnlp/super_tweeteval
pipeline_tag: text-classification
---
# cardiffnlp/twitter-roberta-large-hate-latest


This is a RoBERTa-large model trained on 154M tweets until the end of December 2022 and finetuned for hate speech detection (multiclass classification) on the _TweetHate_ dataset of [SuperTweetEval](https://huggingface.co/datasets/cardiffnlp/super_tweeteval).
The original Twitter-based RoBERTa model can be found [here](https://huggingface.co/cardiffnlp/twitter-roberta-large-2022-154m).

# Labels
<code>
"id2label": {
  "0": "hate_gender",
  "1": "hate_race",  
  "2": "hate_sexuality",  
  "3": "hate_religion",  
  "4": "hate_origin",  
  "5": "hate_disability",  
  "6": "hate_age",  
  "7": "not_hate"
}
</code>

## Example
```python
from transformers import pipeline
text = 'Eid Mubarak Everyone!!! ❤ May Allah unite all Muslims, show us the right path, and bless us with good health.❣'

pipe = pipeline('text-classification', model="cardiffnlp/twitter-roberta-large-hate-latest")
pipe(text)
>> [{'label': 'not_hate', 'score': 0.9997966885566711}]
```

## Citation Information

Please cite the [reference paper](https://arxiv.org/abs/2310.14757) if you use this model.

```bibtex
@inproceedings{antypas2023supertweeteval,
  title={SuperTweetEval: A Challenging, Unified and Heterogeneous Benchmark for Social Media NLP Research},
  author={Dimosthenis Antypas and Asahi Ushio and Francesco Barbieri and Leonardo Neves and Kiamehr Rezaee and Luis Espinosa-Anke and Jiaxin Pei and Jose Camacho-Collados},
  booktitle={Findings of the Association for Computational Linguistics: EMNLP 2023},
  year={2023}
}
```