File size: 2,373 Bytes
7a0cada 2508de5 199ac16 2508de5 199ac16 2508de5 7a0cada 2508de5 7a0cada 2508de5 7a0cada 2508de5 7a0cada 2508de5 7a0cada 2508de5 7a0cada 2508de5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 |
---
language: multilingual
widget:
- text: "T'estimo!"
- text: "I love you!"
- text: "I hate you"
- text: "Mahal kita!"
- text: "์ฌ๋ํด!"
- text: "๋ ๋๊ฐ ์ซ์ด"
---
# twitter-XLM-roBERTa-base for Sentiment Analysis
This is a XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis in
- Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://...).
- Git Repo: [Tweeteval official repository](https://github.com/cardiffnlp/xlm-t).
## Example Pipeline
```python
from transformers import pipeline
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("T'estimo!")
```
## Full classification example
```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer
import numpy as np
from scipy.special import softmax
# Preprocess text (username and link placeholders)
def preprocess(text):
new_text = []
for t in text.split(" "):
t = '@user' if t.startswith('@') and len(t) > 1 else t
t = 'http' if t.startswith('http') else t
new_text.append(t)
return " ".join(new_text)
MODEL = f"/home/jupyter/misc/tweeteval/TweetEval_models/xlm-twitter/twitter-xlm-roberta-base-sentiment"
tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)
# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)
text = "Good night ๐"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)
# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)
# text = "Good night ๐"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)
# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
l = config.id2label[ranking[i]]
s = scores[ranking[i]]
print(f"{i+1}) {l} {np.round(float(s), 4)}")
```
Output:
```
1) Positive 0.7673
2) Neutral 0.2015
3) Negative 0.0313
```
|