File size: 2,944 Bytes
7a0cada
e924cf5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a0cada
968fc69
34227e9
7a0cada
34227e9
7a0cada
 
 
968fc69
7a0cada
 
 
2508de5
 
f3e34b6
2508de5
88a0007
083e90c
2508de5
7a0cada
 
 
 
 
 
 
856553b
d80dae4
856553b
7a0cada
 
2508de5
 
 
 
54186b7
2508de5
 
 
 
 
 
 
 
 
 
 
 
8bc605c
2508de5
 
7a0cada
2508de5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a0cada
2508de5
 
 
7a0cada
2508de5
 
 
 
 
 
 
 
7a0cada
 
 
2508de5
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
language: 
- multilingual
- en
- pt
- es
- ar
- ko
- ja
- id
- tl
- tr
- fr
- ru
- th
- it
- de
- fa
- pl
- hi
- nl
- ht
- et
- ud
- ca
- sv
- fi
- el
- cs
- eu
- he
- ta
- zh
- no
- da
- cy
- lv
- hu
- ro
- lt
- vi
- uk
- ne
- sl
- is
- sr
- ml
- bn
- bg
- mr
- si
- te
- kn
- ku
- ps
- gu
- my
- am
- hy
- or
- sd
- pa
- km
- ka
- lo
- dv
- ug
widget:
- text: "๐Ÿค—"
- text: "T'estimo! โค๏ธ"
- text: "I love you!"
- text: "I hate you ๐Ÿคฎ"
- text: "Mahal kita!"
- text: "์‚ฌ๋ž‘ํ•ด!"
- text: "๋‚œ ๋„ˆ๊ฐ€ ์‹ซ์–ด"
- text: "๐Ÿ˜๐Ÿ˜๐Ÿ˜"
---


# twitter-XLM-roBERTa-base for Sentiment Analysis

This is a multilingual XLM-roBERTa-base model trained on ~198M tweets and finetuned for sentiment analysis. The sentiment fine-tuning was done on 8 languages (Ar, En, Fr, De, Hi, It, Sp, Pt) but it can be used for more languages (see paper for details).

- Paper: [XLM-T: A Multilingual Language Model Toolkit for Twitter](https://arxiv.org/abs/2104.12250). 
- Git Repo: [XLM-T official repository](https://github.com/cardiffnlp/xlm-t).

## Example Pipeline
```python
from transformers import pipeline
model_path = "cardiffnlp/twitter-xlm-roberta-base-sentiment"
sentiment_task = pipeline("sentiment-analysis", model=model_path, tokenizer=model_path)
sentiment_task("T'estimo!")
```
```
[{'label': 'Positive', 'score': 0.6600581407546997}]
```

## Full classification example

```python
from transformers import AutoModelForSequenceClassification
from transformers import TFAutoModelForSequenceClassification
from transformers import AutoTokenizer, AutoConfig
import numpy as np
from scipy.special import softmax

# Preprocess text (username and link placeholders)
def preprocess(text):
    new_text = []
    for t in text.split(" "):
        t = '@user' if t.startswith('@') and len(t) > 1 else t
        t = 'http' if t.startswith('http') else t
        new_text.append(t)
    return " ".join(new_text)

MODEL = f"cardiffnlp/twitter-xlm-roberta-base-sentiment"

tokenizer = AutoTokenizer.from_pretrained(MODEL)
config = AutoConfig.from_pretrained(MODEL)

# PT
model = AutoModelForSequenceClassification.from_pretrained(MODEL)
model.save_pretrained(MODEL)

text = "Good night ๐Ÿ˜Š"
text = preprocess(text)
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
scores = output[0][0].detach().numpy()
scores = softmax(scores)

# # TF
# model = TFAutoModelForSequenceClassification.from_pretrained(MODEL)
# model.save_pretrained(MODEL)

# text = "Good night ๐Ÿ˜Š"
# encoded_input = tokenizer(text, return_tensors='tf')
# output = model(encoded_input)
# scores = output[0][0].numpy()
# scores = softmax(scores)

# Print labels and scores
ranking = np.argsort(scores)
ranking = ranking[::-1]
for i in range(scores.shape[0]):
    l = config.id2label[ranking[i]]
    s = scores[ranking[i]]
    print(f"{i+1}) {l} {np.round(float(s), 4)}")

```

Output: 

```
1) Positive 0.7673
2) Neutral 0.2015
3) Negative 0.0313
```