ppo-LunarLander-v2-003 / config.json
carlosaguayo's picture
Upload PPO LunarLander-v2 trained agent
5ecc236 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x74ff81168c20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x74ff81168cc0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x74ff81168d60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x74ff81168e00>", "_build": "<function ActorCriticPolicy._build at 0x74ff81168ea0>", "forward": "<function ActorCriticPolicy.forward at 0x74ff81168f40>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x74ff81168fe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x74ff81169080>", "_predict": "<function ActorCriticPolicy._predict at 0x74ff81169120>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x74ff811691c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x74ff81169260>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x74ff81169300>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x74ff96315f00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1729522631931897403, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADPNPr3lWcU/0Q6DvoV/LD68TmI9G0ZcPQAAAAAAAAAAM8/LOzEMuj9IAYw9pzAGPkmcoDwO0Vs9AAAAAAAAAADth4q+4ra6PyP6dL+tHWW+Sn0JPzkWqD4AAAAAAAAAAArjvT6oG6Q/as5GP7zc/76ENNu+uG98vgAAAAAAAAAApiM+vtxolj8Gj2m/WT4Wv8r7eD5whXw+AAAAAAAAAADATpO9imQZPA2dOj+PqOO/B0Lfv0K5Lr8AAIA/AAAAAMDtrT6z8l4/UIaKP3fOWL+qMh2/G02uvgAAAAAAAAAAzYw6vDBN1T9wCAE8YYVPPc+mEL46aqS9AAAAAAAAAACaAHa9di+9P2cJQr/ToL8+1hA9PZVFrz0AAAAAAAAAAIDDIT1Ulqk/RClLPWLtqr7P8Es9avQCPgAAAAAAAAAA28kiv31KaD4YAqa/l8asv0AHhD9VK3g+AAAAAAAAAACtOmw+ttyEP6z4LT+KmlS/JqYjvjAC77sAAAAAAAAAALPgTr0+JXQ/qtc9vnmPj79aScc8ehT4vAAAAAAAAAAARnphPpFqhz4bpRk/w8Srv2nQYb969g2/AAAAAAAAAACaBUc9cymmP5aRGj8dHiS//QgovT+Sub0AAAAAAAAAAECIuz1KeKw/MJYyPdSiyL4sR0o+8BpsvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwHVWMGX5WR2MAWyUS0qMAXSURz/0ZHI6r/83dX2UKGgGR8Ba51EqlP8AaAdLc2gIRz/0eIInjQzDdX2UKGgGR8B0M2rxRVIaaAdLYGgIRz/0lvMr3CbddX2UKGgGR8BhjgevIOpbaAdLTWgIRz/0rvkRzzVddX2UKGgGR8BNDvicXm/4aAdLSWgIRz/0vPgNwzcidX2UKGgGR8B5fx3KSxJNaAdLY2gIRz/0ywbEP1+RdX2UKGgGR8B1Vwl+mWMTaAdLZGgIRz/1AWnCO3lTdX2UKGgGR8BkCuKuSwGGaAdLVWgIRz/1CV8kUsWgdX2UKGgGR8BfAGjsUqQSaAdLTGgIRz/1G1lXiiqRdX2UKGgGR8BdL+Tq0MPSaAdLUGgIRz/1LTDwYtQLdX2UKGgGR8BpjCGL1mJ4aAdLRWgIRz/1YVZcLSeAdX2UKGgGR8Bfn0WAPNFCaAdLUGgIRz/1qEJ0GNaRdX2UKGgGR8BTXhXnyNGWaAdLPWgIRz/1siGFi8WcdX2UKGgGR8BeW52ll9SdaAdLUGgIRz/10k8ifQKKdX2UKGgGR8BV/wOOKfnPaAdLY2gIRz/2MKohpxm1dX2UKGgGR8BUDuhbnoxIaAdLUGgIRz/2UEs8PnSwdX2UKGgGR8BmyD+glF+eaAdLTWgIRz/2W0Re1KGtdX2UKGgGR8B6qA6q814xaAdLTGgIRz/2cVYZEUj+dX2UKGgGR8BdCHs5XEIgaAdLXGgIRz/2dqYZ2pyZdX2UKGgGR8BVJeT7l7tzaAdLkWgIRz/2tP557gKndX2UKGgGR8Bc0hNM495haAdLbmgIRz/2xL9MsYl6dX2UKGgGR8B9mtHf/FR6aAdLYWgIRz/22r4nF5v+dX2UKGgGR8Bsu0uJ1q33aAdLVmgIRz/26A8SwnpjdX2UKGgGR8B30C/dqL0jaAdLW2gIRz/3HRLK3d9EdX2UKGgGR8B3p1tygf2caAdLZGgIRz/3OvZAY51edX2UKGgGR8ByaMnTiKixaAdLYGgIRz/3fAKv3ai9dX2UKGgGR8BkwmkN4JNTaAdLVWgIRz/3kZNwiqyXdX2UKGgGR8BrG4VTJhfCaAdLcGgIRz/3pQtSQ5mzdX2UKGgGR8Bjdrghr30xaAdLYWgIRz/3yHdoFmnPdX2UKGgGR0A8k5eqrBCVaAdLWWgIRz/3yN83Mpw0dX2UKGgGR8BhTVMwlByCaAdLWWgIRz/4RIJ7b+LndX2UKGgGR8BsQiVII4VAaAdLZGgIRz/4aVQhwEQodX2UKGgGR8BVnSLZSNwSaAdLS2gIRz/4aFuejEehdX2UKGgGR8BqlBYT0xubaAdLW2gIRz/4dld1MdtEdX2UKGgGR8BwLCVpsXSCaAdLYWgIRz/4fZZjhDPXdX2UKGgGR8BdIAtOEdvLaAdLRmgIRz/4oyCWeHzpdX2UKGgGR8B0eTbeuV5baAdLVGgIRz/4vAoG6f8NdX2UKGgGR8BZlES/TLGJaAdLQWgIRz/45SR8twrEdX2UKGgGR8BWtBP0qYqoaAdLaWgIRz/4+j7ALy+YdX2UKGgGR8BSigYtQKrraAdLUmgIRz/5AeA/cFhYdX2UKGgGR8BeYWM4tHx0aAdLeGgIRz/5DsyBTXJ6dX2UKGgGR8BXnWjTKDChaAdLT2gIRz/5QMQVbiZOdX2UKGgGR8Bx2P3mFJxvaAdLT2gIRz/5WUKRdQfqdX2UKGgGR8A4+FRpDeCTaAdLeGgIRz/5c5XEIgNgdX2UKGgGR8BSjtmDlHSXaAdLPGgIRz/5tqHoHLRsdX2UKGgGR8BZis9bHIZJaAdLXmgIRz/5yXMQmNR4dX2UKGgGR8BaN+PNmlImaAdLRWgIRz/53DaXa8HwdX2UKGgGR8B3ZuCBf8dgaAdLYWgIRz/52Z3LV4HHdX2UKGgGR8Brpiz7di2EaAdLRmgIRz/6HQUpNKywdX2UKGgGR8BY75SNwR5DaAdLRmgIRz/6NcfNiYsvdX2UKGgGR8BYEyZrpJPJaAdLPWgIRz/6VchTwUg0dX2UKGgGR8BcTROclPadaAdLRWgIRz/6W0qpcX3ydX2UKGgGR8BYiIEB8x9HaAdLWmgIRz/6YkqtozvadX2UKGgGR8BopvUONHYpaAdLYmgIRz/6ebutwJgLdX2UKGgGR8BE5EtNBWxRaAdLQGgIRz/6ofCAMDwIdX2UKGgGR8Bo7PE4vN/waAdLd2gIRz/60/nnuAqedX2UKGgGR8BqbIcBEKE4aAdLX2gIRz/7DySV4X41dX2UKGgGR8BXDGhVU+9raAdLUmgIRz/7H7cfvF3qdX2UKGgGR8BfBtuLrHENaAdLQWgIRz/7T238XN1RdX2UKGgGR8BS9KbONYKZaAdLRmgIRz/7Wdd3Sro4dX2UKGgGR8BqYuC7K7qZaAdLWmgIRz/7a3NLUTcqdX2UKGgGR8BfYGwiaAnVaAdLTWgIRz/7bRBu4wyqdX2UKGgGR8BTgagdwNsnaAdLN2gIRz/7kNrj5sTGdX2UKGgGR8BcNnWBjFyaaAdLd2gIRz/7kHD7655JdX2UKGgGR8BSDns9jgAIaAdLSmgIRz/7uMl1KXfJdX2UKGgGR8BJqzLW7OE/aAdLR2gIRz/7wjps41gqdX2UKGgGR8Byj4VVPva2aAdLZGgIRz/8A5WBBiTddX2UKGgGR8BjbGSdOIqLaAdLUWgIRz/8G8RL9MsZdX2UKGgGR8BhdQjfNzKcaAdLWmgIRz/8VbaAWi1zdX2UKGgGR8BW0RnFo+OfaAdLW2gIRz/8wfyPMjeLdX2UKGgGR8BUEd7OVxCIaAdLSWgIRz/81XFLnLaFdX2UKGgGR8Bjt1lmOEM9aAdLaGgIRz/83Wz4UN8WdX2UKGgGR8Bi1i+8Gs3iaAdLd2gIRz/9EUO/cnE3dX2UKGgGR8BmnGBOHnEEaAdLVWgIRz/9Jm29cry2dX2UKGgGR8BwGOlqJuVHaAdLYmgIRz/9KcAiml67dX2UKGgGR8BYOpAlfJFLaAdLYWgIRz/9Nkrf+CK8dX2UKGgGR8BoXU7p3X7MaAdLR2gIRz/9RfF72L5zdX2UKGgGR8BZ5GqkuYhMaAdLUWgIRz/9T4HoouwpdX2UKGgGR8BaLGvKU3XJaAdLR2gIRz/9UFwDNhVmdX2UKGgGR8Bq8BWHUMG5aAdLY2gIRz/9qzzErGzbdX2UKGgGR8BrQOv4dp7DaAdLb2gIRz/9xy4nWrfcdX2UKGgGR8A474pMHryEaAdLS2gIRz/99xuKoAGTdX2UKGgGR8BkW+z+m3vyaAdLemgIRz/+B7E5yU9qdX2UKGgGR8BFr0qhDgIhaAdLO2gIRz/+IoJAt4A0dX2UKGgGR8BUv3fEXLvDaAdLa2gIRz/+a8Djin50dX2UKGgGR8B00oIppeu3aAdLdWgIRz/+jgZTAFgVdX2UKGgGR8BZgtp22XsxaAdLUGgIRz/+nWrfcer/dX2UKGgGR8BflG69TP0JaAdLRmgIRz/+qyWzF+/hdX2UKGgGR8ByqyGIsRQKaAdLT2gIRz/+5aaCtihGdX2UKGgGR8B3NwGTs6aLaAdLX2gIRz//NNnGsFMadX2UKGgGR8BoqKP+4smOaAdLXWgIRz//R0+1SflIdX2UKGgGR8BwCvai9IwuaAdLeGgIRz//ZPEbYK6XdX2UKGgGR8BlyzT4L1EmaAdLRWgIRz//eSbH6uW9dX2UKGgGR8BigSpkwvg4aAdLZ2gIRz//iGrS3LFGdX2UKGgGR8BgmUW9DhLoaAdLbWgIRz//qX4TK1XvdX2UKGgGR8BdJZul41P4aAdLWmgIRz//vPC2tuDSdX2UKGgGR8BVinYQJ5VwaAdLYmgIRz//z6BRQ79ydX2UKGgGR8BlFzF4s3AEaAdLV2gIR0AABBNVR1oydX2UKGgGR8BYHJzxPO6eaAdLRGgIR0AABazNUwSKdX2UKGgGR8BSQYNy5qdpaAdLXGgIR0AABOzposZpdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHEvaG9tZS9jYXJsb3NhZ3VheW8vcmVwby91YnVudHUtbm90ZWJvb2tzLTIvZW52XzMxMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHEvaG9tZS9jYXJsb3NhZ3VheW8vcmVwby91YnVudHUtbm90ZWJvb2tzLTIvZW52XzMxMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVJgMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwiVAZcAiQFTAJROhZQpjAFflIWUjHEvaG9tZS9jYXJsb3NhZ3VheW8vcmVwby91YnVudHUtbm90ZWJvb2tzLTIvZW52XzMxMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlEuEQwj4gADYDxKICpRDAJSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjHEvaG9tZS9jYXJsb3NhZ3VheW8vcmVwby91YnVudHUtbm90ZWJvb2tzLTIvZW52XzMxMS9saWIvcHl0aG9uMy4xMS9zaXRlLXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlGgAjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIX2UfZQoaBiMBGZ1bmOUjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGYwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "system_info": {"OS": "Linux-6.8.0-47-generic-x86_64-with-glibc2.39 # 47-Ubuntu SMP PREEMPT_DYNAMIC Fri Sep 27 21:40:26 UTC 2024", "Python": "3.11.10", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1"}}