Upload PPO LunarLander-v2 trained agent
Browse files- README.md +4 -4
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +21 -21
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
-
- name: PPO
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
@@ -16,13 +16,13 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
-
# **PPO
|
25 |
-
This is a trained model of a **PPO
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
|
|
6 |
- reinforcement-learning
|
7 |
- stable-baselines3
|
8 |
model-index:
|
9 |
+
- name: PPO
|
10 |
results:
|
11 |
- task:
|
12 |
type: reinforcement-learning
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 264.72 +/- 26.43
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
|
28 |
## Usage (with Stable-baselines3)
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x793ee8c57eb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x793ee8c57f40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x793ee8c60040>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x793ee8c600d0>", "_build": "<function ActorCriticPolicy._build at 0x793ee8c60160>", "forward": "<function ActorCriticPolicy.forward at 0x793ee8c601f0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x793ee8c60280>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x793ee8c60310>", "_predict": "<function ActorCriticPolicy._predict at 0x793ee8c603a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x793ee8c60430>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x793ee8c604c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x793ee8c60550>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x793e8ac88640>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 114688, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736759536043380834, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGa2Trsc/7I/wlsjvvbllL5AYG07RXwSPQAAAAAAAAAADQ+0vUKQFD+Qw2q8yUhfvxmVtL7w+My9AAAAAAAAAACa69a8Wfe2Px1KvL79+qA9iAFEPQ5TDj4AAAAAAAAAAJrteT0YDIg96x+Fvsyek78Ik5s+RmOCPQAAAAAAAAAAs4oTvcsiqT/xpbO+B1jSvvbeKT32zPg9AAAAAAAAAAAmb/K95YN+Pz/Ug74Q5ki/byCXvSCJE74AAAAAAAAAAGa6vD2dyLA/el0fP/1nQL4qzJS9ss4JPQAAAAAAAAAAc0OwvX7OKj+Als09XCxvv8AK5b4WYqs9AAAAAAAAAACa6h+9mi2AP1qsUr1KlUS/pwRmvtO73b0AAAAAAAAAAM0M8zotrrU/rU9APgl3wD7EXgy75T4uvQAAAAAAAAAAZqpDPqR/TjwCRfU8AXtGvyWogT7UMZ2+AACAPwAAgD8zKt48DZO0P2GNwT6yiDS9OVVcvPY7BT0AAAAAAAAAALat+T7HHwq+dUwrOX0wvDb5ClU99nm/twAAgD8AAIA/M83zvFSvlj/VgL+9YT4Uv+PDlr2ioRs9AAAAAAAAAADAR0g+xk2XPwavFj9mjeS+W9qWvYiJNL0AAAAAAAAAACITpL55otY+7JY4PcdKc7/C0R+/mCfKvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAEAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.1468799999999999, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwEag1gH/tIGMAWyUS36MAXSUR0BymmTlkpZwdX2UKGgGR8BKYILG7z06aAdLXmgIR0BymrM+u/1ydX2UKGgGR8BGtd3B55Z9aAdLV2gIR0Bym1Bw++uedX2UKGgGR8A7mmfXf642aAdLc2gIR0BynBSVGCqZdX2UKGgGR8BLqUNBnjABaAdLbWgIR0BynLNVzZHvdX2UKGgGR8BEPoduHerNaAdLXmgIR0BynL6hxo7FdX2UKGgGR8BBVYVZcLSeaAdLRWgIR0BynU580DU3dX2UKGgGR8BR/HC9AX2vaAdLZ2gIR0BynjkOqebvdX2UKGgGR8BOf2rfcer/aAdLXWgIR0Byno6nzg/DdX2UKGgGR8BXInEQ5FPSaAdLSGgIR0ByntTaTOgQdX2UKGgGR8A9UMMZxaPkaAdLTmgIR0BynxuYQarFdX2UKGgGR8BCpwcghbGFaAdLbWgIR0Byn0ggX/HYdX2UKGgGR8BRRr39JjDsaAdLeWgIR0Byn4KYzBRAdX2UKGgGR8BRwjr7fpEAaAdLWWgIR0Byn8XVLBbfdX2UKGgGR8AzV72+PBBSaAdLgGgIR0Byn9CZ4Oc2dX2UKGgGR8A1gw1zhgmaaAdLYGgIR0ByoB5zHS4OdX2UKGgGR8Ba3V4gRsdlaAdLWmgIR0ByoCR6nivQdX2UKGgGR8BLryRSxZ+yaAdLfmgIR0ByoHOhTOxCdX2UKGgGR8BSAAN5MURGaAdLVGgIR0ByoSLgn+hodX2UKGgGR8Bb3r3PAwfyaAdLbmgIR0Byodf4REncdX2UKGgGR8BToco6S1VpaAdLTmgIR0ByogNlRP43dX2UKGgGR8BD6R9gF5fMaAdLXGgIR0ByokM3IdU9dX2UKGgGR8BTIlzIV/MGaAdLYWgIR0ByooYfnwG4dX2UKGgGR8BRBcqBmPHUaAdLVGgIR0Byo3sLORkmdX2UKGgGR8BFrtpM6BAfaAdLT2gIR0BypGOR1X/6dX2UKGgGR8BIcgwwj+rEaAdLRGgIR0BypG9TP0I1dX2UKGgGR8BTQgNTcZccaAdLaWgIR0BypQhje9BbdX2UKGgGR8BFFXb212JSaAdLVmgIR0BypSe4Cp3pdX2UKGgGR8BU2WJFb3XaaAdLaGgIR0BypUG5c1O1dX2UKGgGR8A8LvCMxXXAaAdLdmgIR0BypUJD3M6jdX2UKGgGR8BRG1yBClabaAdLZ2gIR0BypgF3Y+SsdX2UKGgGR8BDWduxbB42aAdLSGgIR0BypliiItUXdX2UKGgGR8BZW5Pdl/YraAdLR2gIR0BypvVNHpbEdX2UKGgGR8BdeIao/A0saAdLcGgIR0BypvTOPeYVdX2UKGgGR8A5F/WlMyrQaAdLgmgIR0Byp2YBvJiidX2UKGgGR8BUvLDqGDcuaAdLbWgIR0Byp9bor4FidX2UKGgGR8BAX2y1NQCTaAdLVmgIR0ByqO7wrlNldX2UKGgGR8Bo+bZDiOvMaAdLoGgIR0ByqQ2LpA2RdX2UKGgGR8BYV8Md92HMaAdLdmgIR0ByqaYoiLVGdX2UKGgGR8BYxX4bjtG/aAdLU2gIR0Byqbyd4FA3dX2UKGgGR8BCv1qN6w+uaAdLf2gIR0ByqfOgQHzIdX2UKGgGR8BWcSf16E8JaAdLV2gIR0ByqgV8CxNZdX2UKGgGR8BRoZLdvbXZaAdLUWgIR0ByqxbUwztUdX2UKGgGR8BBmhNM495haAdLRmgIR0Byq2a4MF2WdX2UKGgGR8A2jMhX8wYcaAdLZmgIR0Byq9a8pTdddX2UKGgGR8BT2ykj5bhWaAdLUWgIR0ByrI6q814xdX2UKGgGR8BFPEfT1CgLaAdLcmgIR0ByrJbhWHUMdX2UKGgGR8BLbBpg1FYuaAdLYGgIR0ByrRBzFMqSdX2UKGgGR8BZeZrpJPIoaAdLgWgIR0ByrVKraM72dX2UKGgGR8BOv+Q+2VmjaAdLgWgIR0ByrW7Ackt3dX2UKGgGR8BTdYu01IiDaAdLYWgIR0ByrfiuMdcTdX2UKGgGR8BQJf1YhdMTaAdLUGgIR0Byri9Htnf3dX2UKGgGR8BQcucUdq+KaAdLfWgIR0Byrkj0L+gldX2UKGgGR8BIV7CSA6MjaAdLUWgIR0ByrxEJBw+/dX2UKGgGR8BbQyH/LkjpaAdLZWgIR0Byr1cB2fTTdX2UKGgGR8Baqmb9ZRsNaAdLYmgIR0Byr+EoOQQudX2UKGgGR8BSHGbLEDQraAdLT2gIR0BysAbR4QjEdX2UKGgGR8BQenUH6dlNaAdLRWgIR0BysB1aGHpKdX2UKGgGR8BM2ljmSyMUaAdLZWgIR0BysFinYQJ5dX2UKGgGR8BMLIhpxm03aAdLWGgIR0BysNDNQj2SdX2UKGgGR8BQ4KhUR3/xaAdLSmgIR0BysYuPFNtZdX2UKGgGR8BiyhKQJXyRaAdLU2gIR0BysaOo5xR3dX2UKGgGR8BQNmrCFbmmaAdLZmgIR0Bysstcv/R3dX2UKGgGR8A8WKziS7oTaAdLV2gIR0Bys1CjUNKAdX2UKGgGR8BKlKfFrEcbaAdLRWgIR0Bys0cENe+mdX2UKGgGR8BLsSf16E8JaAdLa2gIR0Bys/+2mYShdX2UKGgGR8BTmkvXbuc+aAdLSmgIR0BytHHcUM5PdX2UKGgGR8BSOUMTewcHaAdLd2gIR0BytKpbUwztdX2UKGgGR8BULGoJiRW+aAdLVmgIR0BytKbKA8SxdX2UKGgGR8BuQRY/3WWhaAdLd2gIR0BytYVh1DBudX2UKGgGR8Bdm9GiHqNZaAdLRmgIR0Bytho7FKkEdX2UKGgGR8AwVKP4mCyyaAdLgGgIR0Bytl7hNucddX2UKGgGR8BGeR7iQ1aXaAdLY2gIR0Byt0lE7W/bdX2UKGgGR8BqjjOZ9d/saAdLdWgIR0Byt5XwLE1mdX2UKGgGR8BM/gwGnn+yaAdLfGgIR0ByuCcXm/34dX2UKGgGR8BPuvaURnOCaAdLR2gIR0ByuNTUAks0dX2UKGgGR0A3xEgGKQ7taAdLhGgIR0ByuP+717IDdX2UKGgGR8BZOE4m1IAfaAdLXWgIR0ByuRk9U0emdX2UKGgGR8BXh2ZAprk9aAdLZ2gIR0ByulML4N7TdX2UKGgGR8BRDBOUMXrMaAdLgmgIR0Byul/b0voNdX2UKGgGR8A8RUkOZssQaAdLVmgIR0Byupfx+a0AdX2UKGgGR8BQK8bzbvgFaAdLcmgIR0ByvFv60pmVdX2UKGgGR8BRTQWBSUC8aAdLXWgIR0ByvJK+SKWLdX2UKGgGR8BHAluvUz9CaAdLi2gIR0ByvNULlV94dX2UKGgGR8BQkaR6nivQaAdLfGgIR0ByvU3EQ5FPdX2UKGgGR8BS1OjEehf0aAdLb2gIR0ByvVjWkJrtdX2UKGgGR8BWj8s+V1OkaAdLbGgIR0ByvdrpJPIodX2UKGgGR8BYOsPFvQ4TaAdLYmgIR0Byvi39aUzLdX2UKGgGR8BWwQ7gbZOBaAdLYmgIR0ByvoZrHlwMdX2UKGgGR8BVoCSidrftaAdLbmgIR0BywKmce8wpdX2UKGgGR8A9R9y925hCaAdLd2gIR0BywJYgaFVUdX2UKGgGR8BUC7Gm1pj+aAdLamgIR0BywKQbMotudX2UKGgGR8BUHjArQPZqaAdLZGgIR0BywY9r433pdX2UKGgGR8BJah6a9bosaAdLfGgIR0Bywd+uvECOdX2UKGgGR8BJA0ZNwiqyaAdLVmgIR0BywxavA44qdX2UKGgGR8BX9eERJ2+xaAdLemgIR0Byw21w5vLpdX2UKGgGR8Ax3IvrWy1NaAdLgWgIR0Byw7GPxQSBdX2UKGgGR8BSNPXoTwlTaAdLSmgIR0Byw548lolEdX2UKGgGR8BKPRtxdY4iaAdLXWgIR0ByxCLzf779dX2UKGgGR8BXpEKE384xaAdLaWgIR0ByxBPbfxc3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 28, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ed64c15ac20>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ed64c15acb0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ed64c15ad40>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ed64c15add0>", "_build": "<function ActorCriticPolicy._build at 0x7ed64c15ae60>", "forward": "<function ActorCriticPolicy.forward at 0x7ed64c15aef0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ed64c15af80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ed64c15b010>", "_predict": "<function ActorCriticPolicy._predict at 0x7ed64c15b0a0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ed64c15b130>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ed64c15b1c0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ed64c15b250>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ed64c2f5100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1736839349152909477, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq2Vb0UuI66WZlGtTudm7DQzMq6h8RKNAAAgD8AAIA/Zp7qPBgv1D2DCOW8Bjg2vhPhRT1u+L+9AAAAAAAAAADN6am8FDyquvOHMzSTW5CvzKiOOlbxoLMAAIA/AACAP0aGBT4Rb10+RvMZvvvxiL4g+BW9eCqevQAAAAAAAAAAbclpvk7LZj96qoO97XmrvkEdOr6cnQE+AAAAAAAAAAAzILa8lzlaPm78Bj1ZNkm+jm/OPCBMzzwAAAAAAAAAALOF8b3hiLy6rZv7s4mYDLHjioa3qkCzMwAAgD8AAIA/s4VWvbhOwbmmA4o3EiHPMs05bzv/+qS2AACAPwAAgD/m3Sg90vyvPCq/Yb3fPUS+/fUbvIKzCD0AAAAAAAAAAJrtKj0w73c/joOFPOQ73r6Odga8DVxaPQAAAAAAAAAAMysLvcMxZ7o6tEo259cCMsJojTs95mu1AACAPwAAgD8tboQ+laPvPjgLAL6KcYq+eNenPTEgPb0AAAAAAAAAAGa/6r00qFk+YF7JPWquiL7ku8g6PhAyPQAAAAAAAAAAigKFPtu05z7lX6u+2SSOvpvGorvOXsu8AAAAAAAAAAANsI++Iu48Pytu3DzxD6q+cmCfvhVdED4AAAAAAAAAABpH3r0d0dk+kvifPhoTyL77uIw+SKwyvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBx0jcEeQyMAWyUTSgBjAF0lEdAkbhm0E5hjXV9lChoBkdAcan/lQuVX2gHS/xoCEdAkbi8M7U5MnV9lChoBkdAbg5eLvTgEWgHTSgBaAhHQJG45mRNh3J1fZQoaAZHQGy5Rgy/KyRoB00mAWgIR0CRuqwN9YwJdX2UKGgGR0BvqtiSaEzwaAdNLQFoCEdAkbrHY150KnV9lChoBkdAcHioduHerWgHTRcBaAhHQJG7PHOryUd1fZQoaAZHQHD/bD63y7RoB0v+aAhHQJG8fEzfrKN1fZQoaAZHQG9k5kCmuT1oB008AWgIR0CRvMah6By0dX2UKGgGR0BxeUbdadMCaAdNKwFoCEdAkb3BkEs8PnV9lChoBkdAcOTdYnv2G2gHTQgBaAhHQJG9zVBlcyF1fZQoaAZHQHIwEahpQDVoB00aAWgIR0CRvhMs6JZXdX2UKGgGR0BvMBmTTvy9aAdNFAFoCEdAkb5Jy2hIv3V9lChoBkdAcoM/lhgE2mgHTSoBaAhHQJG/DftQbdd1fZQoaAZHQG1Sguh9LHxoB00SAWgIR0CRvwys0YTCdX2UKGgGR0BvqC6xxDLKaAdNFgFoCEdAkb+4uf29MHV9lChoBkdAclVkfcN6PmgHTQMBaAhHQJHACJj2Bat1fZQoaAZHQHGdKZ+hGpdoB00gAWgIR0CRwFWEbo8qdX2UKGgGR0BvcrlJYkmhaAdNFwFoCEdAkcCzR+jM3nV9lChoBkdAcrPIIF/x2GgHTWkBaAhHQJHCSAJ9iMJ1fZQoaAZHQHEsctoSL61oB00ZAWgIR0CRwpkQf6oEdX2UKGgGR0ByCgUxmCiAaAdNCgFoCEdAkcKxreqJdnV9lChoBkdAcAn9SuQp4WgHTToBaAhHQJHDujSG8Ep1fZQoaAZHQG441vddmg9oB00hAWgIR0CRxaGTs6aLdX2UKGgGR0BwfD2nKnvVaAdNKwFoCEdAkcWtk4FRpHV9lChoBkdAbO7o4+8oQWgHTSMBaAhHQJHHDER8MNN1fZQoaAZHQHJnF8kUsWhoB00qAWgIR0CRyB5vcafjdX2UKGgGR0BwgCQbMotuaAdNMgFoCEdAkcgo8lolEHV9lChoBkdAcfi6S1Vo6GgHTUoBaAhHQJHIvyhBZ6l1fZQoaAZHQG2U1AiV0LdoB00vAWgIR0CRyWC6H0sfdX2UKGgGR0BxtHQLNOdoaAdNNgFoCEdAkcmuR9w3pHV9lChoBkdAb99Muez2OGgHTR4BaAhHQJHJw5CF9KF1fZQoaAZHQG5ojyWiUPhoB00IAWgIR0CRydf779AHdX2UKGgGR0BtwsINVinYaAdNKAFoCEdAkcqFrhzeXXV9lChoBkdAbV8W6bvw3GgHTS8BaAhHQJHLszj3mFJ1fZQoaAZHQHB1umrKeTVoB00EAWgIR0CRzLFQ2uPndX2UKGgGR0BuXlFH8TBZaAdNJwFoCEdAkc2hDLKV6nV9lChoBkdAca1JuEVWS2gHTUIBaAhHQJHPOO2iL2p1fZQoaAZHQHBpJvxYq5NoB00IAWgIR0CRz79FF2FGdX2UKGgGR0BxFwcsDnvEaAdNQAFoCEdAkc/3SfDk2nV9lChoBkdAcnwM0gr6L2gHTRsBaAhHQJHQTk2gnMN1fZQoaAZHQHFFcr7O3UhoB00aAWgIR0CR0oCAMDwIdX2UKGgGR0BvfYlhPTG6aAdNMwFoCEdAkdLVFlTWG3V9lChoBkdAcGS2W6bvw2gHTVYBaAhHQJHTLENvwVl1fZQoaAZHQHDDKRU3n6loB00zAWgIR0CR09aMJhOQdX2UKGgGR0BxpbjLjghsaAdNHQFoCEdAkdQdOEdvKnV9lChoBkdAcSkUCJXQt2gHTT0BaAhHQJHUez/p+tt1fZQoaAZHQHGaG+oLofVoB01WAWgIR0CR1RfnwG4adX2UKGgGR0BxChuIhyKfaAdNfAFoCEdAkdUgZGax5nV9lChoBkdAcYg8TSLIgmgHTR8BaAhHQJHV7t4RmK91fZQoaAZHQHEx1cpsoDxoB01GAWgIR0CR1jqWC2+gdX2UKGgGR0ByLVyvLX+VaAdNPAFoCEdAkejXhn8KonV9lChoBkdAcogmWt2cKGgHTSkBaAhHQJHqKwRoRI11fZQoaAZHQHKQg53kgfVoB009AWgIR0CR6pO8kD6ndX2UKGgGR0BwXuDK5kLAaAdNPAFoCEdAkess1Gb1AnV9lChoBkdAcpUssxwhn2gHTQoBaAhHQJHsK0WuX/p1fZQoaAZHQGyAlFlTWG1oB00lAWgIR0CR7LZ4fOlgdX2UKGgGR0Bvl92Pkq+baAdNkQFoCEdAkeyz4DcM3XV9lChoBkdAblf/7SApa2gHTR0BaAhHQJHtCp5u63B1fZQoaAZHQHGaTIvJzT5oB00dAWgIR0CR7ZwJPZZkdX2UKGgGR0BxdGinHeabaAdNNwFoCEdAke6gQHzH0nV9lChoBkdAcNvITXarWGgHTRUBaAhHQJHuoQZn+Q51fZQoaAZHQHFQGSpzcRFoB00hAWgIR0CR7u2rXDm9dX2UKGgGR0BwtqXAuZkTaAdNJAFoCEdAkfBCvxH5J3V9lChoBkdAb83bD/EOy2gHTTABaAhHQJHwTh60IC51fZQoaAZHQHEORDTjNpxoB01kAWgIR0CR8EwIt16mdX2UKGgGR0Bwcee4Cp3paAdNIAFoCEdAkfFRVZLZjHV9lChoBkdAa+MbrC3w1GgHTQcBaAhHQJHy3FtKqXF1fZQoaAZHQHHHHEdeY2NoB00iAWgIR0CR8x1dPci4dX2UKGgGR0Bw2BxlxwQ2aAdNUQFoCEdAkfRIeDFqBXV9lChoBkdAcMCiL2pQ12gHTQQBaAhHQJH0XUrkKeF1fZQoaAZHQHD0lUuL741oB00sAWgIR0CR9RCGetjkdX2UKGgGR0BwnPVTaTOgaAdNPwFoCEdAkfY15Sm65HV9lChoBkdActayad+Xq2gHTTwBaAhHQJH2iEAYHgR1fZQoaAZHQG26nZK3/gloB00JAWgIR0CR9rJwKjSHdX2UKGgGR0Bu5WykbgjyaAdNKAFoCEdAkffZ8neBQXV9lChoBkdAcZQBRhttRGgHTQIBaAhHQJH4wbLlmvp1fZQoaAZHQHKMAW8AaNxoB01mAWgIR0CR+RmUGFBZdX2UKGgGR0BtYHLJSzgNaAdNQgFoCEdAkfuQY+B6KXV9lChoBkdAVicc94eLemgHTegDaAhHQJH7wFaB7NV1fZQoaAZHQHI275ZbILhoB00gAWgIR0CR+835eqrBdX2UKGgGR0ByipiqhlDnaAdNfwFoCEdAkfw43Ns3ynV9lChoBkdAcA3pbUwztWgHTVQBaAhHQJH8XndO6/Z1fZQoaAZHQHDs0rK/201oB00qAWgIR0CR/o9F4LThdX2UKGgGR0BxM4VIqbz9aAdNRQFoCEdAkf9gv6CUYHV9lChoBkdAcWt/hESdv2gHTSEBaAhHQJH/n8l5WzZ1fZQoaAZHQHKPwXAM2FZoB00fAWgIR0CR/6fTCtRvdX2UKGgGR0Bv3R4+r2g4aAdNKwFoCEdAkgEBkiD/VHV9lChoBkdAcKm0F8ohIWgHTQgBaAhHQJIBXLSuyNZ1fZQoaAZHQHGgd+1Bt1poB0v/aAhHQJICXutwJgN1fZQoaAZHQG9O/4REnb9oB00lAWgIR0CSAqUYKpkxdX2UKGgGR0BxALqrzXjEaAdNQAFoCEdAkgMuzlcQiHV9lChoBkdAcOrZXMhX82gHTRwBaAhHQJIERd4Vym11fZQoaAZHQG7RC8FpwjtoB00nAWgIR0CSBFfG+9J0dX2UKGgGR0BxKIjC53C9aAdL+2gIR0CSBPs0HhS+dX2UKGgGR0BwziAuqWC3aAdNGgFoCEdAkgWjHOryUnV9lChoBkdAa+aT6BRQ8GgHTSMBaAhHQJIF/xI8QqZ1fZQoaAZHQHHcLxy4nWtoB00jAWgIR0CSBlDJlrdndX2UKGgGR0BxktYW+GoKaAdNDAFoCEdAkgdWL1mJ33V9lChoBkdAcGDzcAR02mgHTUsBaAhHQJIHjundfsx1fZQoaAZHQG7/W3z+WGBoB00CAWgIR0CSB9D6nBLxdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVrQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFowEZnVuY5SMDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.5.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "3.1.0", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:acece624d6cdfbf36258f38978d9da041101da0d3e56f1451e75215ee9650f33
|
3 |
+
size 148016
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,54 +4,54 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc._abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
-
"num_timesteps":
|
25 |
-
"_total_timesteps":
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
-
"start_time":
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
-
":serialized:": "
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
-
":serialized:": "
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
-
"_current_progress_remaining": -0.
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
-
":serialized:": "
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
-
"_n_updates":
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ed64c15ac20>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ed64c15acb0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ed64c15ad40>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ed64c15add0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ed64c15ae60>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ed64c15aef0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ed64c15af80>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ed64c15b010>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ed64c15b0a0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ed64c15b130>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ed64c15b1c0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ed64c15b250>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ed64c2f5100>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
"_num_timesteps_at_start": 0,
|
27 |
"seed": null,
|
28 |
"action_noise": null,
|
29 |
+
"start_time": 1736839349152909477,
|
30 |
"learning_rate": 0.0003,
|
31 |
"tensorboard_log": null,
|
32 |
"_last_obs": {
|
33 |
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABq2Vb0UuI66WZlGtTudm7DQzMq6h8RKNAAAgD8AAIA/Zp7qPBgv1D2DCOW8Bjg2vhPhRT1u+L+9AAAAAAAAAADN6am8FDyquvOHMzSTW5CvzKiOOlbxoLMAAIA/AACAP0aGBT4Rb10+RvMZvvvxiL4g+BW9eCqevQAAAAAAAAAAbclpvk7LZj96qoO97XmrvkEdOr6cnQE+AAAAAAAAAAAzILa8lzlaPm78Bj1ZNkm+jm/OPCBMzzwAAAAAAAAAALOF8b3hiLy6rZv7s4mYDLHjioa3qkCzMwAAgD8AAIA/s4VWvbhOwbmmA4o3EiHPMs05bzv/+qS2AACAPwAAgD/m3Sg90vyvPCq/Yb3fPUS+/fUbvIKzCD0AAAAAAAAAAJrtKj0w73c/joOFPOQ73r6Odga8DVxaPQAAAAAAAAAAMysLvcMxZ7o6tEo259cCMsJojTs95mu1AACAPwAAgD8tboQ+laPvPjgLAL6KcYq+eNenPTEgPb0AAAAAAAAAAGa/6r00qFk+YF7JPWquiL7ku8g6PhAyPQAAAAAAAAAAigKFPtu05z7lX6u+2SSOvpvGorvOXsu8AAAAAAAAAAANsI++Iu48Pytu3DzxD6q+cmCfvhVdED4AAAAAAAAAABpH3r0d0dk+kvifPhoTyL77uIw+SKwyvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
},
|
36 |
"_last_episode_starts": {
|
37 |
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
},
|
40 |
"_last_original_obs": null,
|
41 |
"_episode_num": 0,
|
42 |
"use_sde": false,
|
43 |
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
"_stats_window_size": 100,
|
46 |
"ep_info_buffer": {
|
47 |
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVQAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHBx0jcEeQyMAWyUTSgBjAF0lEdAkbhm0E5hjXV9lChoBkdAcan/lQuVX2gHS/xoCEdAkbi8M7U5MnV9lChoBkdAbg5eLvTgEWgHTSgBaAhHQJG45mRNh3J1fZQoaAZHQGy5Rgy/KyRoB00mAWgIR0CRuqwN9YwJdX2UKGgGR0BvqtiSaEzwaAdNLQFoCEdAkbrHY150KnV9lChoBkdAcHioduHerWgHTRcBaAhHQJG7PHOryUd1fZQoaAZHQHD/bD63y7RoB0v+aAhHQJG8fEzfrKN1fZQoaAZHQG9k5kCmuT1oB008AWgIR0CRvMah6By0dX2UKGgGR0BxeUbdadMCaAdNKwFoCEdAkb3BkEs8PnV9lChoBkdAcOTdYnv2G2gHTQgBaAhHQJG9zVBlcyF1fZQoaAZHQHIwEahpQDVoB00aAWgIR0CRvhMs6JZXdX2UKGgGR0BvMBmTTvy9aAdNFAFoCEdAkb5Jy2hIv3V9lChoBkdAcoM/lhgE2mgHTSoBaAhHQJG/DftQbdd1fZQoaAZHQG1Sguh9LHxoB00SAWgIR0CRvwys0YTCdX2UKGgGR0BvqC6xxDLKaAdNFgFoCEdAkb+4uf29MHV9lChoBkdAclVkfcN6PmgHTQMBaAhHQJHACJj2Bat1fZQoaAZHQHGdKZ+hGpdoB00gAWgIR0CRwFWEbo8qdX2UKGgGR0BvcrlJYkmhaAdNFwFoCEdAkcCzR+jM3nV9lChoBkdAcrPIIF/x2GgHTWkBaAhHQJHCSAJ9iMJ1fZQoaAZHQHEsctoSL61oB00ZAWgIR0CRwpkQf6oEdX2UKGgGR0ByCgUxmCiAaAdNCgFoCEdAkcKxreqJdnV9lChoBkdAcAn9SuQp4WgHTToBaAhHQJHDujSG8Ep1fZQoaAZHQG441vddmg9oB00hAWgIR0CRxaGTs6aLdX2UKGgGR0BwfD2nKnvVaAdNKwFoCEdAkcWtk4FRpHV9lChoBkdAbO7o4+8oQWgHTSMBaAhHQJHHDER8MNN1fZQoaAZHQHJnF8kUsWhoB00qAWgIR0CRyB5vcafjdX2UKGgGR0BwgCQbMotuaAdNMgFoCEdAkcgo8lolEHV9lChoBkdAcfi6S1Vo6GgHTUoBaAhHQJHIvyhBZ6l1fZQoaAZHQG2U1AiV0LdoB00vAWgIR0CRyWC6H0sfdX2UKGgGR0BxtHQLNOdoaAdNNgFoCEdAkcmuR9w3pHV9lChoBkdAb99Muez2OGgHTR4BaAhHQJHJw5CF9KF1fZQoaAZHQG5ojyWiUPhoB00IAWgIR0CRydf779AHdX2UKGgGR0BtwsINVinYaAdNKAFoCEdAkcqFrhzeXXV9lChoBkdAbV8W6bvw3GgHTS8BaAhHQJHLszj3mFJ1fZQoaAZHQHB1umrKeTVoB00EAWgIR0CRzLFQ2uPndX2UKGgGR0BuXlFH8TBZaAdNJwFoCEdAkc2hDLKV6nV9lChoBkdAca1JuEVWS2gHTUIBaAhHQJHPOO2iL2p1fZQoaAZHQHBpJvxYq5NoB00IAWgIR0CRz79FF2FGdX2UKGgGR0BxFwcsDnvEaAdNQAFoCEdAkc/3SfDk2nV9lChoBkdAcnwM0gr6L2gHTRsBaAhHQJHQTk2gnMN1fZQoaAZHQHFFcr7O3UhoB00aAWgIR0CR0oCAMDwIdX2UKGgGR0BvfYlhPTG6aAdNMwFoCEdAkdLVFlTWG3V9lChoBkdAcGS2W6bvw2gHTVYBaAhHQJHTLENvwVl1fZQoaAZHQHDDKRU3n6loB00zAWgIR0CR09aMJhOQdX2UKGgGR0BxpbjLjghsaAdNHQFoCEdAkdQdOEdvKnV9lChoBkdAcSkUCJXQt2gHTT0BaAhHQJHUez/p+tt1fZQoaAZHQHGaG+oLofVoB01WAWgIR0CR1RfnwG4adX2UKGgGR0BxChuIhyKfaAdNfAFoCEdAkdUgZGax5nV9lChoBkdAcYg8TSLIgmgHTR8BaAhHQJHV7t4RmK91fZQoaAZHQHEx1cpsoDxoB01GAWgIR0CR1jqWC2+gdX2UKGgGR0ByLVyvLX+VaAdNPAFoCEdAkejXhn8KonV9lChoBkdAcogmWt2cKGgHTSkBaAhHQJHqKwRoRI11fZQoaAZHQHKQg53kgfVoB009AWgIR0CR6pO8kD6ndX2UKGgGR0BwXuDK5kLAaAdNPAFoCEdAkess1Gb1AnV9lChoBkdAcpUssxwhn2gHTQoBaAhHQJHsK0WuX/p1fZQoaAZHQGyAlFlTWG1oB00lAWgIR0CR7LZ4fOlgdX2UKGgGR0Bvl92Pkq+baAdNkQFoCEdAkeyz4DcM3XV9lChoBkdAblf/7SApa2gHTR0BaAhHQJHtCp5u63B1fZQoaAZHQHGaTIvJzT5oB00dAWgIR0CR7ZwJPZZkdX2UKGgGR0BxdGinHeabaAdNNwFoCEdAke6gQHzH0nV9lChoBkdAcNvITXarWGgHTRUBaAhHQJHuoQZn+Q51fZQoaAZHQHFQGSpzcRFoB00hAWgIR0CR7u2rXDm9dX2UKGgGR0BwtqXAuZkTaAdNJAFoCEdAkfBCvxH5J3V9lChoBkdAb83bD/EOy2gHTTABaAhHQJHwTh60IC51fZQoaAZHQHEORDTjNpxoB01kAWgIR0CR8EwIt16mdX2UKGgGR0Bwcee4Cp3paAdNIAFoCEdAkfFRVZLZjHV9lChoBkdAa+MbrC3w1GgHTQcBaAhHQJHy3FtKqXF1fZQoaAZHQHHHHEdeY2NoB00iAWgIR0CR8x1dPci4dX2UKGgGR0Bw2BxlxwQ2aAdNUQFoCEdAkfRIeDFqBXV9lChoBkdAcMCiL2pQ12gHTQQBaAhHQJH0XUrkKeF1fZQoaAZHQHD0lUuL741oB00sAWgIR0CR9RCGetjkdX2UKGgGR0BwnPVTaTOgaAdNPwFoCEdAkfY15Sm65HV9lChoBkdActayad+Xq2gHTTwBaAhHQJH2iEAYHgR1fZQoaAZHQG26nZK3/gloB00JAWgIR0CR9rJwKjSHdX2UKGgGR0Bu5WykbgjyaAdNKAFoCEdAkffZ8neBQXV9lChoBkdAcZQBRhttRGgHTQIBaAhHQJH4wbLlmvp1fZQoaAZHQHKMAW8AaNxoB01mAWgIR0CR+RmUGFBZdX2UKGgGR0BtYHLJSzgNaAdNQgFoCEdAkfuQY+B6KXV9lChoBkdAVicc94eLemgHTegDaAhHQJH7wFaB7NV1fZQoaAZHQHI275ZbILhoB00gAWgIR0CR+835eqrBdX2UKGgGR0ByipiqhlDnaAdNfwFoCEdAkfw43Ns3ynV9lChoBkdAcA3pbUwztWgHTVQBaAhHQJH8XndO6/Z1fZQoaAZHQHDs0rK/201oB00qAWgIR0CR/o9F4LThdX2UKGgGR0BxM4VIqbz9aAdNRQFoCEdAkf9gv6CUYHV9lChoBkdAcWt/hESdv2gHTSEBaAhHQJH/n8l5WzZ1fZQoaAZHQHKPwXAM2FZoB00fAWgIR0CR/6fTCtRvdX2UKGgGR0Bv3R4+r2g4aAdNKwFoCEdAkgEBkiD/VHV9lChoBkdAcKm0F8ohIWgHTQgBaAhHQJIBXLSuyNZ1fZQoaAZHQHGgd+1Bt1poB0v/aAhHQJICXutwJgN1fZQoaAZHQG9O/4REnb9oB00lAWgIR0CSAqUYKpkxdX2UKGgGR0BxALqrzXjEaAdNQAFoCEdAkgMuzlcQiHV9lChoBkdAcOrZXMhX82gHTRwBaAhHQJIERd4Vym11fZQoaAZHQG7RC8FpwjtoB00nAWgIR0CSBFfG+9J0dX2UKGgGR0BxKIjC53C9aAdL+2gIR0CSBPs0HhS+dX2UKGgGR0BwziAuqWC3aAdNGgFoCEdAkgWjHOryUnV9lChoBkdAa+aT6BRQ8GgHTSMBaAhHQJIF/xI8QqZ1fZQoaAZHQHHcLxy4nWtoB00jAWgIR0CSBlDJlrdndX2UKGgGR0BxktYW+GoKaAdNDAFoCEdAkgdWL1mJ33V9lChoBkdAcGDzcAR02mgHTUsBaAhHQJIHjundfsx1fZQoaAZHQG7/W3z+WGBoB00CAWgIR0CSB9D6nBLxdWUu"
|
49 |
},
|
50 |
"ep_success_buffer": {
|
51 |
":type:": "<class 'collections.deque'>",
|
52 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
},
|
54 |
+
"_n_updates": 248,
|
55 |
"observation_space": {
|
56 |
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 88362
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1ff5761ed09d44d5a2e653bb9ae429cfafc6aca4e72910b0e64fe5387b1768e2
|
3 |
size 88362
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43762
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:62aca280f08f8a10a14b77baba2e4d15471bc34a8ccb60d92dcc14727bc7a979
|
3 |
size 43762
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 264.7193073656229, "std_reward": 26.42789951144903, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2025-01-14T07:53:27.435928"}
|