lsg-bart-base-16384-pubmed / modeling_lsg_bart.py
ccdv's picture
fix encoder decoder
f62c593
raw
history blame
41.5 kB
from logging import warn
import torch
from transformers.models.bart.modeling_bart import *
from transformers.models.bart.modeling_bart import _expand_mask
import torch.nn as nn
from torch.nn import BCEWithLogitsLoss
import sys
AUTO_MAP = {
"AutoModel": "modeling_lsg_bart.LSGBartModel",
"AutoModelForCausalLM": "modeling_lsg_bart.LSGBartForCausalLM",
"AutoModelForQuestionAnswering": "modeling_lsg_bart.LSGBartForQuestionAnswering",
"AutoModelForSequenceClassification": "modeling_lsg_bart.LSGBartForSequenceClassification",
"AutoModelForSeq2SeqLM": "modeling_lsg_bart.LSGBartForConditionalGeneration"
}
class LSGBartConfig(BartConfig):
"""
This class overrides :class:`~transformers.RobertaConfig`. Please check the superclass for the appropriate
documentation alongside usage examples.
"""
base_model_prefix = "lsg"
model_type = "bart"
keys_to_ignore_at_inference = ["past_key_values"]
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__(
self,
adaptive=True,
base_model_prefix="lsg",
block_size=128,
lsh_num_pre_rounds=1,
mask_first_token=False,
num_global_tokens=1,
pass_global_tokens_to_decoder=True,
pool_with_global=True,
sparse_block_size=128,
sparsity_factor=2,
sparsity_type="norm",
**kwargs
):
"""Constructs LSGConfig."""
super().__init__(**kwargs)
self.adaptive = adaptive
self.auto_map = AUTO_MAP
self.base_model_prefix = base_model_prefix
self.block_size = block_size
self.lsh_num_pre_rounds = lsh_num_pre_rounds
self.mask_first_token = mask_first_token
self.num_global_tokens = num_global_tokens
self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder
self.pool_with_global = pool_with_global
self.sparse_block_size = sparse_block_size
self.sparsity_factor = sparsity_factor
self.sparsity_type = sparsity_type
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
logger.warning(
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], setting sparsity_type=None, computation will skip sparse attention")
self.sparsity_type = None
if self.sparsity_type in ["stride", "block_stride"]:
if self.sparsity_factor > self.encoder_attention_heads:
logger.warning(
"[WARNING CONFIG]: sparsity_factor > encoder_attention_heads is not recommended for stride/block_stride sparsity"
)
if self.num_global_tokens < 1:
logger.warning(
"[WARNING CONFIG]: num_global_tokens < 1 is not compatible, setting num_global_tokens=1"
)
self.num_global_tokens = 1
elif self.num_global_tokens > 512:
logger.warning(
"[WARNING CONFIG]: num_global_tokens > 512 is not compatible, setting num_global_tokens=512"
)
self.num_global_tokens = 512
if self.sparsity_factor > 0:
assert self.block_size % self.sparsity_factor == 0, "[ERROR CONFIG]: block_size must be divisible by sparsity_factor"
assert self.block_size//self.sparsity_factor >= 1, "[ERROR CONFIG]: make sure block_size >= sparsity_factor"
class BaseSelfAttention(nn.Module):
def __init__(
self,
embed_dim,
num_heads,
dropout=0.0,
is_decoder=False,
bias=True,
):
super().__init__()
self.embed_dim = embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
if (self.head_dim * num_heads) != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
f" and `num_heads`: {num_heads})."
)
self.scaling = self.head_dim ** -0.5
self.is_decoder = is_decoder
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
def transpose_for_scores(self, x):
new_x_shape = x.size()[:-1] + (
self.num_heads,
self.head_dim,
)
x = x.view(*new_x_shape)
return x.permute(0, 2, 1, 3)
def reshape_output(self, context_layer):
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
return context_layer.view(*new_context_layer_shape)
def project_QKV(self, hidden_states):
query_layer = self.transpose_for_scores(self.q_proj(hidden_states))
key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
return query_layer, key_layer, value_layer
class BaseAttentionProduct(nn.Module):
def __init__(self, config):
"""
Compute attention: softmax(Q @ K.T) @ V
"""
super().__init__()
self.dropout = nn.Dropout(config.attention_dropout)
def forward(self, query_layer, key_layer, value_layer, attention_mask=None):
d = query_layer.shape[-1]
# Take the dot product between "query" and "key" to get the raw attention scores.
attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
del query_layer
del key_layer
if attention_mask is not None:
# Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
attention_scores = attention_scores + attention_mask
del attention_mask
# Normalize the attention scores to probabilities.
attention_probs = nn.Softmax(dim=-1)(attention_scores)
# This is actually dropping out entire tokens to attend to, which might
# seem a bit unusual, but is taken from the original Transformer paper.
context_layer = self.dropout(attention_probs) @ value_layer
return context_layer
class LSGAttentionProduct(nn.Module):
def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4):
"""
Compute block or overlapping blocks attention products
"""
super().__init__()
self.block_size = block_size
self.sparse_block_size = sparse_block_size
self.sparsity_factor = sparsity_factor
if self.block_size is None:
self.block_size = config.block_size
if self.sparse_block_size is None:
self.sparse_block_size = config.sparse_block_size
# Shape of blocks
self.local_shapes = (self.block_size*3, self.block_size)
if self.sparse_block_size and self.sparsity_factor > 0:
self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor)
self.attention = BaseAttentionProduct(config)
def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False):
# Build local tokens
local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask)
del hidden_states
# Build sparse tokens
if sparse_hidden_states is not None:
sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask)
return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states)
def forward(
self,
query_layer,
key_layer,
value_layer,
attention_mask=None,
sparse_key=None,
sparse_value=None,
sparse_mask=None,
global_key=None,
global_value=None,
global_mask=None
):
# Input batch, heads, length, hidden_size
n, h, t, d = query_layer.size()
n_blocks = t // self.block_size
assert t % self.block_size == 0
key_layer = self.build_lsg_inputs(
key_layer,
sparse_key,
global_key
)
del sparse_key
del global_key
value_layer = self.build_lsg_inputs(
value_layer,
sparse_value,
global_value
)
del sparse_value
del global_value
attention_mask = self.build_lsg_inputs(
attention_mask,
sparse_mask,
global_mask.transpose(-1, -2),
is_attn_mask=True
).transpose(-1, -2)
del sparse_mask
del global_mask
# expect (..., t, d) shape
# Compute attention
context_layer = self.attention(
query_layer=self.chunk(query_layer, n_blocks),
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
return context_layer.reshape(n, h, -1, d)
def reshape_to_local_block(self, hidden_states, is_attn_mask=False):
size, step = self.local_shapes
s = (size - step) // 2
# Pad before block reshaping
if is_attn_mask:
pad_value = -10000
hidden_states = hidden_states.transpose(-1, -2)
else:
pad_value = 0
hidden_states = torch.nn.functional.pad(
hidden_states.transpose(-1, -2),
pad=(s, s),
value=pad_value
).transpose(-1, -2)
# Make blocks
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
return hidden_states
def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False):
size, step = self.sparse_shapes
# In case of odd case
odd_offset = (step % 2)
# n, h, t, d*2 + 1
size = size*2
s = (size - step) // 2 + odd_offset
# Pad before block reshaping
if is_attn_mask:
pad_value = -10000
hidden_states = hidden_states.transpose(-1, -2)
else:
pad_value = 0
hidden_states = torch.nn.functional.pad(
hidden_states.transpose(-1, -2),
pad=(s, s),
value=pad_value
).transpose(-1, -2)
# Make blocks
hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
# Fix case where block_size == sparsify_factor
if odd_offset:
hidden_states = hidden_states[..., :-1, :, :]
# Indexes for selection
u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset
s = self.sparse_block_size
u_ = u + odd_offset
return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2)
def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2):
n, h, b, t, d = x_local.size()
x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1)
if x_sparse is not None:
return torch.cat([x_global, x_sparse, x_local], dim=dim)
return torch.cat([x_global, x_local], dim=dim)
def chunk(self, x, n_blocks):
t, d = x.size()[-2:]
return x.reshape(*x.size()[:-2], n_blocks, -1, d)
class LSGBartEncoderAttention(BaseSelfAttention):
'''
Compute local attention with overlapping blocs
Use global attention for tokens with highest norm
'''
def __init__(
self,
config,
embed_dim,
num_heads,
dropout
):
super().__init__(embed_dim, num_heads, dropout)
self.block_size = config.block_size
self.sparse_block_size = config.sparse_block_size
self.num_global_tokens = config.num_global_tokens
self.sparsity_factor = config.sparsity_factor
self.attention = LSGAttentionProduct(
config,
block_size=config.block_size,
sparse_block_size=config.sparse_block_size,
sparsity_factor=self.sparsity_factor,
)
self.full_attention = BaseAttentionProduct(config)
sparse_functions = {
"norm": self.get_sparse_tokens_with_norm,
"pooling": self.get_sparse_tokens_with_pooling,
"lsh": self.get_sparse_tokens_with_lsh,
"stride": self.get_sparse_tokens_with_stride,
"block_stride": self.get_sparse_tokens_with_block_stride,
}
self.sparsity_type = config.sparsity_type
self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None))
if config.sparsity_type == "lsh":
self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
def get_sparse_tokens_with_norm(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
with torch.no_grad():
block_size = min(self.block_size, self.sparse_block_size)
key_norm = keys.detach().norm(dim=-1, keepdim=True)
key_norm = key_norm * ~mask.transpose(-1, -2).bool()
key_norm = self.chunk(key_norm, block_size)
n, h, b, t, d = key_norm.size()
idx = key_norm.argsort(dim=-2)
del key_norm
idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1)
split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor)
sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1)
d = keys.size()[-1]
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
return keys, values, mask
def get_sparse_tokens_with_pooling(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
keys = self.chunk(keys, self.sparsity_factor)
values = self.chunk(values, self.sparsity_factor)
n, h, b, t, d = keys.size()
mask = mask.reshape(n, 1, b, 1, t)
mask = ~mask.transpose(-1, -2).bool()
keys = keys * mask
values = values * mask
mask = mask.sum(dim=-2)
keys = keys.sum(dim=-2) / (mask + 1e-6)
values = values.sum(dim=-2) / (mask + 1e-6)
mask = - (1. - mask.clamp(0, 1)) * 1e4
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
def get_sparse_tokens_with_stride(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
n, h, t, d = keys.size()
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
sparse_idx = sparse_idx.expand(n, h, -1, 1)
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
return keys, values, mask
def get_sparse_tokens_with_block_stride(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
n, h, t, d = keys.size()
t, b = self.block_size, t // self.block_size
sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device)
sparse_idx = sparse_idx.reshape(1, 1, 1, -1, 1) + torch.arange(h, device=keys.device).reshape(1, h, 1, 1, 1) * (t // self.sparsity_factor)
sparse_idx = (sparse_idx % t)
sparse_idx = sparse_idx + torch.arange(b, device=keys.device).reshape(1, 1, -1, 1, 1) * t
sparse_idx = sparse_idx.reshape(1, h, -1, 1).expand(n, h, -1, 1)
keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
return keys, values, mask
def get_sparse_tokens_with_lsh(self, keys, values, mask):
if self.sparsity_factor == 1:
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
block_size = min(self.block_size, self.sparse_block_size)
keys = self.chunk(keys, block_size)
values = self.chunk(values, block_size)
n, h, b, t, d = keys.size()
mask = mask.reshape(n, 1, b, 1, t)
mask = ~mask.transpose(-1, -2).bool()
keys = keys * mask
values = values * mask
mask = mask.expand(-1, h, -1, -1, -1).float()
extra_factor = 1
for _ in range(self.lsh_num_pre_rounds):
keys, values, mask = self.lsh_round(keys, values, mask, t*extra_factor)
keys, values, mask = self.lsh_round(keys, values, mask, t//self.sparsity_factor)
keys /= mask + 1e-8
values /= mask + 1e-8
mask = -10000 * (1. - mask.clamp(0, 1))
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
def lsh_round(self, keys, values, mask, output_size):
with torch.no_grad():
n_hashes = output_size // 2
n, h, b, t, d = keys.size()
binary_mask = mask.clamp(0, 1)
indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device)
indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True)
n, h, b, t, d = keys.size()
x_ = torch.zeros(n, h, b, output_size, d, device=keys.device)
mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device)
keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys)
values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values)
mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask)
return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
def forward(
self,
hidden_states,
attention_mask=None,
layer_head_mask=None,
output_attentions=False
):
query_layer, key_layer, value_layer = self.project_QKV(hidden_states)
outputs = self.not_causal_forward(
query_layer,
key_layer,
value_layer,
attention_mask=attention_mask[:, :, :1, :],
head_mask=layer_head_mask,
output_attentions=output_attentions
)
return self.out_proj(outputs), None, None
def not_causal_forward(
self,
query_layer,
key_layer,
value_layer,
attention_mask=None,
head_mask=None,
output_attentions=False,
):
n, h, t, d = query_layer.size()
# Cat global mask
attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
# Use normal attention if local attention covers every tokens
if t <= 2 * self.block_size + self.num_global_tokens:
context_layer = self.full_attention(
query_layer=query_layer,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
if head_mask is not None:
context_layer = context_layer * head_mask[:, :, :1, :1]
return self.reshape_output(context_layer)
# Split input into global tokens and other tokens
split = (self.num_global_tokens, t - self.num_global_tokens)
global_query, query_layer = query_layer.split(split, dim=-2)
# Get global_attention
bos = self.full_attention(
query_layer=global_query,
key_layer=key_layer,
value_layer=value_layer,
attention_mask=attention_mask
)
# Split K Q M on global and non global
global_key, key_layer = key_layer.split(split, dim=-2)
global_value, value_layer = value_layer.split(split, dim=-2)
global_mask, attention_mask = attention_mask.split(split, dim=-1)
n, h, t, d = key_layer.size()
# Get sparse idx
sparse_key, sparse_value, sparse_mask = (None, None, None)
if self.sparse_block_size and self.sparsity_factor > 0:
sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask)
# Expand masks on heads
attention_mask = attention_mask.expand(-1, h, -1, -1)
global_mask = global_mask.expand(-1, h, -1, -1)
# Compute dot product attention
context_layer = self.attention(
query_layer,
key_layer,
value_layer,
attention_mask,
sparse_key=sparse_key,
sparse_value=sparse_value,
sparse_mask=sparse_mask,
global_key=global_key,
global_value=global_value,
global_mask=global_mask
)
# Merge global and local-sparse tokens
context_layer = torch.cat([bos, context_layer], dim=-2)
if head_mask is not None:
context_layer = context_layer * head_mask[:, :, :1, :1]
context_layer = self.reshape_output(context_layer)
return context_layer
def chunk(self, x, chunk_size):
n, h, t, d = x.size()
return x.reshape(n, h, -1, chunk_size, d)
class LSGBartEncoderLayer(BartEncoderLayer):
def __init__(self, config):
super().__init__(config)
self.self_attn = LSGBartEncoderAttention(
config=config,
embed_dim=self.embed_dim,
num_heads=config.encoder_attention_heads,
dropout=config.attention_dropout,
)
class LSGBartDecoderLayer(BartDecoderLayer):
def __init__(self, config):
super().__init__(config)
class LSGBartClassificationHead(BartClassificationHead):
"""Head for sentence-level classification tasks."""
def __init__(
self,
input_dim,
inner_dim,
num_classes,
pooler_dropout,
):
super().__init__(input_dim, inner_dim, num_classes, pooler_dropout)
class LSGBartPretrainedModel(BartPretrainedModel):
config_class = LSGBartConfig
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (BartDecoder, BartEncoder, LSGBartDecoder, LSGBartEncoder)):
module.gradient_checkpointing = value
class PretrainedLSGBartModel(LSGBartPretrainedModel):
def __init_subclass__(self):
warnings.warn(
"The class `PretrainedBartModel` has been depreciated, please use `LSGBartPretrainedModel` instead.",
FutureWarning,
)
class LSGBartEncoder(LSGBartPretrainedModel, BartEncoder):
"""
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
:class:`BartEncoderLayer`.
Args:
config: BartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config, embed_tokens=None):
super().__init__(config)
self.dropout = config.dropout
self.layerdrop = config.encoder_layerdrop
embed_dim = config.d_model
self.padding_idx = config.pad_token_id
self.max_source_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
embed_dim,
)
self.layers = nn.ModuleList([LSGBartEncoderLayer(config) for _ in range(config.encoder_layers)])
self.layernorm_embedding = nn.LayerNorm(embed_dim)
#
assert hasattr(config, "num_global_tokens")
self.num_global_tokens = config.num_global_tokens
self.pad_idx = config.pad_token_id
assert hasattr(config, "block_size") and hasattr(config, "adaptive")
self.block_size = config.block_size
self.adaptive = config.adaptive
self.mask_first_token = config.mask_first_token
self.pool_with_global = config.pool_with_global
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
self.global_embeddings = nn.Embedding(512, embedding_dim=config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
def forward(self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None
):
inputs_ = input_ids if input_ids is not None else inputs_embeds
n, t = inputs_.size()[:2]
if attention_mask is None:
attention_mask = torch.ones(n, t, device=inputs_.device)
if self.mask_first_token:
attention_mask[:, 0] = 0
b = self.block_size * 2
pad = t % self.block_size
# Check if t is multiple of block_size and pad
if self.adaptive and t > b and pad > 0:
pad_length = self.block_size - pad
if input_ids is not None:
input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx)
else:
inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0)
n, t_ = attention_mask.size()
encoder_outputs = self.forward_with_adaptive(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
context = encoder_outputs[0]
diff = t - t_
if self.pass_global_tokens_to_decoder:
offset = self.num_global_tokens
else:
if self.pool_with_global:
context[:, self.num_global_tokens] = context[:, 0]
context = context[..., self.num_global_tokens:, :]
offset = 0
# Adapt sequence to initial shape
if diff < 0:
context = context[:, :t + offset]
if return_dict:
encoder_outputs.last_hidden_state = context
else:
encoder_outputs = (context, ) + encoder_outputs[1:]
return encoder_outputs
def forward_with_adaptive(
self,
input_ids=None,
attention_mask=None,
head_mask=None,
inputs_embeds=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
# retrieve input_ids and inputs_embeds
if input_ids is not None and inputs_embeds is not None:
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
elif input_ids is not None:
input_shape = input_ids.size()
input_ids = input_ids.view(-1, input_shape[-1])
elif inputs_embeds is not None:
input_shape = inputs_embeds.size()[:-1]
else:
raise ValueError("You have to specify either input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
embed_pos = self.embed_positions(input_shape)
hidden_states = inputs_embeds + embed_pos
# Add global tokens
n, t, d = hidden_states.size()
global_idx = torch.arange(self.num_global_tokens, device=hidden_states.device).reshape(1, -1)
hidden_states = torch.cat([self.global_embeddings(global_idx).expand(n, -1, -1), hidden_states], dim=-2)
hidden_states = self.layernorm_embedding(hidden_states)
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
# expand attention_mask
if attention_mask is not None:
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
# check if head_mask has a correct number of layers specified if desired
if head_mask is not None:
if head_mask.size()[0] != (len(self.layers)):
raise ValueError(
f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
)
for idx, encoder_layer in enumerate(self.layers):
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
dropout_probability = random.uniform(0, 1)
if self.training and (dropout_probability < self.layerdrop): # skip the layer
layer_outputs = (None, None)
else:
if self.gradient_checkpointing and self.training:
def create_custom_forward(module):
def custom_forward(*inputs):
return module(*inputs, output_attentions)
return custom_forward
layer_outputs = torch.utils.checkpoint.checkpoint(
create_custom_forward(encoder_layer),
hidden_states,
attention_mask,
(head_mask[idx] if head_mask is not None else None),
)
else:
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
return BaseModelOutput(
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
)
class LSGBartDecoder(BartDecoder, LSGBartPretrainedModel):
"""
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`LSGBartDecoderLayer`
Args:
config: BartConfig
embed_tokens (nn.Embedding): output embedding
"""
def __init__(self, config, embed_tokens=None):
LSGBartPretrainedModel.__init__(self, config)
self.dropout = config.dropout
self.layerdrop = config.decoder_layerdrop
self.padding_idx = config.pad_token_id
self.max_target_positions = config.max_position_embeddings
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
self.adaptive = config.adaptive
if embed_tokens is not None:
self.embed_tokens = embed_tokens
else:
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
self.embed_positions = BartLearnedPositionalEmbedding(
config.max_position_embeddings,
config.d_model,
)
self.layers = nn.ModuleList([LSGBartDecoderLayer(config) for _ in range(config.decoder_layers)])
self.layernorm_embedding = nn.LayerNorm(config.d_model)
self.gradient_checkpointing = False
# Initialize weights and apply final processing
self.post_init()
class LSGBartModel(LSGBartPretrainedModel, BartModel):
def __init__(self, config):
LSGBartPretrainedModel.__init__(self, config)
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
self.num_global_tokens = config.num_global_tokens
self.encoder = LSGBartEncoder(config, self.shared)
self.decoder = LSGBartDecoder(config, self.shared)
# Initialize weights and apply final processing
self.post_init()
def forward(
self,
input_ids=None,
attention_mask=None,
decoder_input_ids=None,
decoder_attention_mask=None,
head_mask=None,
decoder_head_mask=None,
cross_attn_head_mask=None,
encoder_outputs=None,
past_key_values=None,
inputs_embeds=None,
decoder_inputs_embeds=None,
use_cache=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
# different to other models, Bart automatically creates decoder_input_ids from
# input_ids if no decoder_input_ids are provided
if decoder_input_ids is None and decoder_inputs_embeds is None:
decoder_input_ids = shift_tokens_right(
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
)
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else self.config.use_cache
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if encoder_outputs is None:
encoder_outputs = self.encoder(
input_ids=input_ids,
attention_mask=attention_mask,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
encoder_outputs = BaseModelOutput(
last_hidden_state=encoder_outputs[0],
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
)
# Pad mask for global tokens
if self.pass_global_tokens_to_decoder and attention_mask is not None:
attention_mask = torch.nn.functional.pad(attention_mask, pad=(self.num_global_tokens, 0), value=1)
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
decoder_outputs = self.decoder(
input_ids=decoder_input_ids,
attention_mask=decoder_attention_mask,
encoder_hidden_states=encoder_outputs[0],
encoder_attention_mask=attention_mask,
head_mask=decoder_head_mask,
cross_attn_head_mask=cross_attn_head_mask,
past_key_values=past_key_values,
inputs_embeds=decoder_inputs_embeds,
use_cache=use_cache,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
if not return_dict:
return decoder_outputs + encoder_outputs
return Seq2SeqModelOutput(
last_hidden_state=decoder_outputs.last_hidden_state,
past_key_values=decoder_outputs.past_key_values,
decoder_hidden_states=decoder_outputs.hidden_states,
decoder_attentions=decoder_outputs.attentions,
cross_attentions=decoder_outputs.cross_attentions,
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
encoder_hidden_states=encoder_outputs.hidden_states,
encoder_attentions=encoder_outputs.attentions,
)
class LSGBartForConditionalGeneration(BartForConditionalGeneration, LSGBartPretrainedModel):
base_model_prefix = "model"
_keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"]
def __init__(self, config):
LSGBartPretrainedModel.__init__(self, config)
self.model = LSGBartModel(config)
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
# Initialize weights and apply final processing
self.post_init()
class LSGBartForSequenceClassification(BartForSequenceClassification, LSGBartPretrainedModel):
def __init__(self, config: LSGBartConfig, **kwargs):
LSGBartPretrainedModel.__init__(self, config, **kwargs)
self.model = LSGBartModel(config)
self.classification_head = LSGBartClassificationHead(
config.d_model,
config.d_model,
config.num_labels,
config.classifier_dropout,
)
self.model._init_weights(self.classification_head.dense)
self.model._init_weights(self.classification_head.out_proj)
class LSGBartForQuestionAnswering(BartForQuestionAnswering, LSGBartPretrainedModel):
def __init__(self, config: LSGBartConfig):
LSGBartPretrainedModel.__init__(self, config)
config.num_labels = 2
self.num_labels = config.num_labels
self.model = LSGBartModel(config)
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
self.model._init_weights(self.qa_outputs)
class LSGBartDecoderWrapper(LSGBartPretrainedModel):
"""
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
used in combination with the :class:`~transformers.EncoderDecoderModel` framework.
"""
def __init__(self, config: LSGBartConfig):
super().__init__(config)
self.decoder = LSGBartDecoder(config)
def forward(self, *args, **kwargs):
return self.decoder(*args, **kwargs)
class LSGBartForCausalLM(BartForCausalLM, LSGBartPretrainedModel):
def __init__(self, config: LSGBartConfig):
config = copy.deepcopy(config)
config.is_decoder = True
config.is_encoder_decoder = False
LSGBartPretrainedModel.__init__(self, config)
self.model = LSGBartDecoderWrapper(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def str_to_class(classname):
return getattr(sys.modules[__name__], classname)
# Register model in Auto API
try:
LSGBartConfig.register_for_auto_class()
for key, value in AUTO_MAP.items():
str_to_class(value.split(".")[-1]).register_for_auto_class(key)
except:
warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).")
warn("Update to transformers >= 4.17.0 to fix.")