ccdv commited on
Commit
acb8391
·
1 Parent(s): bc9808a
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - summarization
6
+ datasets:
7
+ - scientific_papers
8
+ metrics:
9
+ - rouge
10
+ model-index:
11
+ - name: ccdv/lsg-bart-base-16384-pubmed
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ **This model relies on a custom modeling file, you need to add trust_remote_code=True**\
19
+ **See [\#13467](https://github.com/huggingface/transformers/pull/13467)**
20
+
21
+ # ccdv/lsg-bart-base-16384-pubmed
22
+
23
+ This model is a fine-tuned version of [ccdv/lsg-bart-base-4096-pubmed](https://huggingface.co/ccdv/lsg-bart-base-4096-pubmed) on the scientific_papers pubmed dataset. \
24
+ It achieves the following results on the test set:
25
+
26
+ | Length | Global tokens | Sparse Type | Block Size | Sparsity | Connexions | R1 | R2 | RL | RLsum |
27
+ |:------ |:------------- |:----------- |:---------- |:-------- | :--------- |:----- |:----- |:----- |:----- |
28
+ | 16384 | 64 | - | 256 | 0 | 768 | 48.29 | 22.53 | 29.35 | 44.55 |
29
+
30
+
31
+ ## Model description
32
+ The model relies on Local-Sparse-Global attention to handle long sequences:
33
+ ![attn](attn.png)
34
+
35
+ The model has about ~145 millions parameters (6 encoder layers - 6 decoder layers). \
36
+ The model is warm started from [ccdv/lsg-bart-base-4096-pubmed](https://huggingface.co/ccdv/lsg-bart-base-4096-pubmed), converted to handle long sequences (encoder only) and fine tuned. \
37
+
38
+ ## Intended uses & limitations
39
+
40
+ More information needed
41
+
42
+ ## Training and evaluation data
43
+
44
+ More information needed
45
+
46
+ ## Training procedure
47
+
48
+ ### Training hyperparameters
49
+
50
+ The following hyperparameters were used during training:
51
+ - learning_rate: 8e-05
52
+ - train_batch_size: 1
53
+ - seed: 42
54
+ - gradient_accumulation_steps: 32
55
+ - total_train_batch_size: 32
56
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
57
+ - lr_scheduler_type: linear
58
+ - num_epochs: 1.0
59
+
60
+ ### Generate hyperparameters
61
+
62
+ The following hyperparameters were used during generation:
63
+ - dataset_name: scientific_papers
64
+ - dataset_config_name: pubmed
65
+ - eval_batch_size: 2
66
+ - early_stopping: True
67
+ - ignore_pad_token_for_loss: True
68
+ - length_penalty: 2.0
69
+ - max_length: 512
70
+ - min_length: 128
71
+ - num_beams: 5
72
+ - num_samples: None
73
+ - no_repeat_ngram_size: None
74
+ - seed: 123
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.18.0
79
+ - Pytorch 1.10.1+cu102
80
+ - Datasets 2.1.0
81
+ - Tokenizers 0.11.6
config.json ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "ccdv/lsg-bart-base-16384-pubmed",
3
+ "activation_dropout": 0.1,
4
+ "activation_function": "gelu",
5
+ "adaptive": true,
6
+ "add_bias_logits": false,
7
+ "add_final_layer_norm": false,
8
+ "architectures": [
9
+ "LSGBartForConditionalGeneration"
10
+ ],
11
+ "attention_dropout": 0.1,
12
+ "auto_map": {
13
+ "AutoConfig": "modeling_lsg_bart.LSGBartConfig",
14
+ "AutoModel": "modeling_lsg_bart.LSGBartModel",
15
+ "AutoModelForCausalLM": "modeling_lsg_bart.LSGBartForCausalLM",
16
+ "AutoModelForQuestionAnswering": "modeling_lsg_bart.LSGBartForQuestionAnswering",
17
+ "AutoModelForSeq2SeqLM": "modeling_lsg_bart.LSGBartForConditionalGeneration",
18
+ "AutoModelForSequenceClassification": "modeling_lsg_bart.LSGBartForSequenceClassification"
19
+ },
20
+ "base_model_prefix": "lsg",
21
+ "block_size": 256,
22
+ "bos_token_id": 0,
23
+ "classif_dropout": 0.1,
24
+ "classifier_dropout": 0.0,
25
+ "d_model": 768,
26
+ "decoder_attention_heads": 12,
27
+ "decoder_ffn_dim": 3072,
28
+ "decoder_layerdrop": 0.0,
29
+ "decoder_layers": 6,
30
+ "decoder_start_token_id": 2,
31
+ "dropout": 0.1,
32
+ "early_stopping": true,
33
+ "encoder_attention_heads": 12,
34
+ "encoder_ffn_dim": 3072,
35
+ "encoder_layerdrop": 0.0,
36
+ "encoder_layers": 6,
37
+ "eos_token_id": 2,
38
+ "forced_bos_token_id": 0,
39
+ "forced_eos_token_id": 2,
40
+ "gradient_checkpointing": false,
41
+ "id2label": {
42
+ "0": "LABEL_0",
43
+ "1": "LABEL_1",
44
+ "2": "LABEL_2"
45
+ },
46
+ "init_std": 0.02,
47
+ "is_encoder_decoder": true,
48
+ "label2id": {
49
+ "LABEL_0": 0,
50
+ "LABEL_1": 1,
51
+ "LABEL_2": 2
52
+ },
53
+ "length_penalty": 2.0,
54
+ "lsh_num_pre_rounds": 1,
55
+ "max_length": 512,
56
+ "max_position_embeddings": 16384,
57
+ "min_length": 128,
58
+ "model_type": "bart",
59
+ "no_repeat_ngram_size": null,
60
+ "normalize_before": false,
61
+ "normalize_embedding": true,
62
+ "num_beams": 5,
63
+ "num_global_tokens": 64,
64
+ "num_hidden_layers": 6,
65
+ "pad_token_id": 1,
66
+ "pass_global_tokens_to_decoder": true,
67
+ "pool_with_global": true,
68
+ "scale_embedding": false,
69
+ "sparse_block_size": 0,
70
+ "sparsity_factor": 2,
71
+ "sparsity_type": "norm",
72
+ "task_specific_params": {
73
+ "summarization": {
74
+ "length_penalty": 1.0,
75
+ "max_length": 128,
76
+ "min_length": 12,
77
+ "num_beams": 4
78
+ },
79
+ "summarization_cnn": {
80
+ "length_penalty": 2.0,
81
+ "max_length": 142,
82
+ "min_length": 56,
83
+ "num_beams": 4
84
+ },
85
+ "summarization_xsum": {
86
+ "length_penalty": 1.0,
87
+ "max_length": 62,
88
+ "min_length": 11,
89
+ "num_beams": 6
90
+ }
91
+ },
92
+ "torch_dtype": "float32",
93
+ "transformers_version": "4.18.0",
94
+ "use_cache": true,
95
+ "vocab_size": 50265
96
+ }
eval_results.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "eval_gen_len": 337.3282,
3
+ "eval_loss": 1.5187041759490967,
4
+ "eval_rouge1": 48.2871,
5
+ "eval_rouge2": 22.5259,
6
+ "eval_rougeL": 29.3512,
7
+ "eval_rougeLsum": 44.5493,
8
+ "eval_runtime": 32015.2043,
9
+ "eval_samples": 6658,
10
+ "eval_samples_per_second": 0.208,
11
+ "eval_steps_per_second": 0.104
12
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
modeling_lsg_bart.py ADDED
@@ -0,0 +1,2154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from logging import warn
2
+ import torch
3
+ from transformers.models.bart.modeling_bart import *
4
+ from transformers.models.bart.modeling_bart import _expand_mask
5
+ import torch.nn as nn
6
+ from torch.nn import BCEWithLogitsLoss
7
+ import sys
8
+
9
+ AUTO_MAP = {
10
+ "AutoModel": "modeling_lsg_bart.LSGBartModel",
11
+ "AutoModelForCausalLM": "modeling_lsg_bart.LSGBartForCausalLM",
12
+ "AutoModelForQuestionAnswering": "modeling_lsg_bart.LSGBartForQuestionAnswering",
13
+ "AutoModelForSequenceClassification": "modeling_lsg_bart.LSGBartForSequenceClassification",
14
+ "AutoModelForSeq2SeqLM": "modeling_lsg_bart.LSGBartForConditionalGeneration"
15
+ }
16
+
17
+ class LSGBartConfig(BartConfig):
18
+ """
19
+ This class overrides :class:`~transformers.RobertaConfig`. Please check the superclass for the appropriate
20
+ documentation alongside usage examples.
21
+ """
22
+
23
+ base_model_prefix = "lsg"
24
+ model_type = "bart"
25
+ keys_to_ignore_at_inference = ["past_key_values"]
26
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
27
+
28
+ def __init__(
29
+ self,
30
+ adaptive=True,
31
+ base_model_prefix="lsg",
32
+ block_size=128,
33
+ lsh_num_pre_rounds=1,
34
+ num_global_tokens=1,
35
+ pass_global_tokens_to_decoder=True,
36
+ pool_with_global=True,
37
+ sparse_block_size=128,
38
+ sparsity_factor=2,
39
+ sparsity_type="norm",
40
+ **kwargs
41
+ ):
42
+ """Constructs LSGConfig."""
43
+ super().__init__(**kwargs)
44
+
45
+ assert sparsity_type in ["norm", "lsh", "pooling", "stride"], "Sparsity mode must be 'norm', 'lsh' or 'pooling'"
46
+
47
+ self.adaptive = adaptive
48
+ self.auto_map = AUTO_MAP
49
+ self.base_model_prefix = base_model_prefix
50
+ self.block_size = block_size
51
+ self.lsh_num_pre_rounds = lsh_num_pre_rounds
52
+ self.num_global_tokens = num_global_tokens
53
+ self.pass_global_tokens_to_decoder = pass_global_tokens_to_decoder
54
+ self.pool_with_global = pool_with_global
55
+ self.sparse_block_size = sparse_block_size
56
+ self.sparsity_factor = sparsity_factor
57
+ self.sparsity_type = sparsity_type
58
+
59
+
60
+ def shift_tokens_right(input_ids, pad_token_id, decoder_start_token_id):
61
+ """
62
+ Shift input ids one token to the right.
63
+ """
64
+ shifted_input_ids = input_ids.new_zeros(input_ids.shape)
65
+ shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
66
+ shifted_input_ids[:, 0] = decoder_start_token_id
67
+
68
+ if pad_token_id is None:
69
+ raise ValueError("self.model.config.pad_token_id has to be defined.")
70
+ # replace possible -100 values in labels by `pad_token_id`
71
+ shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
72
+
73
+ return shifted_input_ids
74
+
75
+
76
+ def _make_causal_mask(input_ids_shape, dtype, past_key_values_length=0):
77
+ """
78
+ Make causal mask used for bi-directional self-attention.
79
+ """
80
+ bsz, tgt_len = input_ids_shape
81
+ mask = torch.full((tgt_len, tgt_len), float("-inf"))
82
+ mask_cond = torch.arange(mask.size(-1))
83
+ mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 0)
84
+ mask = mask.to(dtype)
85
+
86
+ if past_key_values_length > 0:
87
+ mask = torch.cat([torch.zeros(tgt_len, past_key_values_length, dtype=dtype), mask], dim=-1)
88
+ return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len + past_key_values_length)
89
+
90
+
91
+ def _expand_mask(mask, dtype, tgt_len=None):
92
+ """
93
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
94
+ """
95
+ bsz, src_len = mask.size()
96
+ tgt_len = tgt_len if tgt_len is not None else src_len
97
+
98
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
99
+
100
+ inverted_mask = 1.0 - expanded_mask
101
+
102
+ return inverted_mask.masked_fill(inverted_mask.bool(), torch.finfo(dtype).min)
103
+
104
+
105
+ class BaseSelfAttention(nn.Module):
106
+
107
+ def __init__(
108
+ self,
109
+ embed_dim,
110
+ num_heads,
111
+ dropout=0.0,
112
+ is_decoder=False,
113
+ bias=True,
114
+ ):
115
+
116
+ super().__init__()
117
+ self.embed_dim = embed_dim
118
+ self.num_heads = num_heads
119
+ self.dropout = dropout
120
+ self.head_dim = embed_dim // num_heads
121
+
122
+ if (self.head_dim * num_heads) != self.embed_dim:
123
+ raise ValueError(
124
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
125
+ f" and `num_heads`: {num_heads})."
126
+ )
127
+ self.scaling = self.head_dim ** -0.5
128
+ self.is_decoder = is_decoder
129
+
130
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
131
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
132
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
133
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
134
+
135
+ def transpose_for_scores(self, x):
136
+ new_x_shape = x.size()[:-1] + (
137
+ self.num_heads,
138
+ self.head_dim,
139
+ )
140
+ x = x.view(*new_x_shape)
141
+ return x.permute(0, 2, 1, 3)
142
+
143
+ def reshape_output(self, context_layer):
144
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
145
+ new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
146
+ return context_layer.view(*new_context_layer_shape)
147
+
148
+ def project_QKV(self, hidden_states):
149
+
150
+ query_layer = self.transpose_for_scores(self.q_proj(hidden_states))
151
+ key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
152
+ value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
153
+ return query_layer, key_layer, value_layer
154
+
155
+
156
+ class BaseAttentionProduct(nn.Module):
157
+
158
+ def __init__(self, config):
159
+ """
160
+ Compute attention: softmax(Q @ K.T) @ V
161
+ """
162
+ super().__init__()
163
+ self.dropout = nn.Dropout(config.attention_dropout)
164
+
165
+ def forward(self, query_layer, key_layer, value_layer, attention_mask=None):
166
+
167
+ d = query_layer.shape[-1]
168
+
169
+ # Take the dot product between "query" and "key" to get the raw attention scores.
170
+ attention_scores = query_layer @ key_layer.transpose(-1, -2) / math.sqrt(d)
171
+
172
+ del query_layer
173
+ del key_layer
174
+
175
+ if attention_mask is not None:
176
+ # Apply the attention mask is (precomputed for all layers in RobertaModel forward() function)
177
+ attention_scores = attention_scores + attention_mask
178
+ del attention_mask
179
+
180
+ # Normalize the attention scores to probabilities.
181
+ attention_probs = nn.Softmax(dim=-1)(attention_scores)
182
+
183
+ # This is actually dropping out entire tokens to attend to, which might
184
+ # seem a bit unusual, but is taken from the original Transformer paper.
185
+ context_layer = self.dropout(attention_probs) @ value_layer
186
+
187
+ return context_layer
188
+
189
+
190
+ class LSGAttentionProduct(nn.Module):
191
+
192
+ def __init__(self, config, block_size=None, sparse_block_size=None, sparsity_factor=4):
193
+ """
194
+ Compute block or overlapping blocks attention products
195
+ """
196
+ super().__init__()
197
+
198
+ self.block_size = block_size
199
+ self.sparse_block_size = sparse_block_size
200
+ self.sparsity_factor = sparsity_factor
201
+
202
+ if self.block_size is None:
203
+ self.block_size = config.block_size
204
+
205
+ if self.sparse_block_size is None:
206
+ self.sparse_block_size = config.sparse_block_size
207
+
208
+ # Shape of blocks
209
+ self.local_shapes = (self.block_size*3, self.block_size)
210
+ if self.sparse_block_size and self.sparsity_factor > 0:
211
+ assert self.block_size % self.sparsity_factor == 0, "block_size must be divisible by sparsity_factor"
212
+ assert self.block_size//self.sparsity_factor >= 1, "Config is wrong, make sure block_size >= sparsity_factor"
213
+ self.sparse_shapes = (self.sparse_block_size*3, self.block_size//self.sparsity_factor)
214
+
215
+ self.attention = BaseAttentionProduct(config)
216
+
217
+ def build_lsg_inputs(self, hidden_states, sparse_hidden_states, global_hidden_states, is_attn_mask=False):
218
+
219
+ # Build local tokens
220
+ local_hidden_states = self.reshape_to_local_block(hidden_states, is_attn_mask)
221
+ del hidden_states
222
+
223
+ # Build sparse tokens
224
+ if sparse_hidden_states is not None:
225
+ sparse_hidden_states = self.reshape_to_sparse_block(sparse_hidden_states, is_attn_mask)
226
+
227
+ return self.cat_global_sparse_local_tokens(global_hidden_states, sparse_hidden_states, local_hidden_states)
228
+
229
+ def forward(
230
+ self,
231
+ query_layer,
232
+ key_layer,
233
+ value_layer,
234
+ attention_mask=None,
235
+ sparse_key=None,
236
+ sparse_value=None,
237
+ sparse_mask=None,
238
+ global_key=None,
239
+ global_value=None,
240
+ global_mask=None
241
+ ):
242
+
243
+ # Input batch, heads, length, hidden_size
244
+ n, h, t, d = query_layer.size()
245
+ n_blocks = t // self.block_size
246
+ assert t % self.block_size == 0
247
+
248
+ key_layer = self.build_lsg_inputs(
249
+ key_layer,
250
+ sparse_key,
251
+ global_key
252
+ )
253
+ del sparse_key
254
+ del global_key
255
+
256
+ value_layer = self.build_lsg_inputs(
257
+ value_layer,
258
+ sparse_value,
259
+ global_value
260
+ )
261
+ del sparse_value
262
+ del global_value
263
+
264
+ attention_mask = self.build_lsg_inputs(
265
+ attention_mask,
266
+ sparse_mask,
267
+ global_mask.transpose(-1, -2),
268
+ is_attn_mask=True
269
+ ).transpose(-1, -2)
270
+ del sparse_mask
271
+ del global_mask
272
+
273
+ # expect (..., t, d) shape
274
+ # Compute attention
275
+ context_layer = self.attention(
276
+ query_layer=self.chunk(query_layer, n_blocks),
277
+ key_layer=key_layer,
278
+ value_layer=value_layer,
279
+ attention_mask=attention_mask
280
+ )
281
+
282
+ return context_layer.reshape(n, h, -1, d)
283
+
284
+ def reshape_to_local_block(self, hidden_states, is_attn_mask=False):
285
+
286
+ size, step = self.local_shapes
287
+ s = (size - step) // 2
288
+
289
+ # Pad before block reshaping
290
+ if is_attn_mask:
291
+ pad_value = -10000
292
+ hidden_states = hidden_states.transpose(-1, -2)
293
+ else:
294
+ pad_value = 0
295
+
296
+ hidden_states = torch.nn.functional.pad(
297
+ hidden_states.transpose(-1, -2),
298
+ pad=(s, s),
299
+ value=pad_value
300
+ ).transpose(-1, -2)
301
+
302
+ # Make blocks
303
+ hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
304
+
305
+ return hidden_states
306
+
307
+ def reshape_to_sparse_block(self, hidden_states, is_attn_mask=False):
308
+
309
+ size, step = self.sparse_shapes
310
+
311
+ # In case of odd case
312
+ odd_offset = (step % 2)
313
+
314
+ # n, h, t, d*2 + 1
315
+ size = size*2
316
+ s = (size - step) // 2 + odd_offset
317
+
318
+ # Pad before block reshaping
319
+ if is_attn_mask:
320
+ pad_value = -10000
321
+ hidden_states = hidden_states.transpose(-1, -2)
322
+ else:
323
+ pad_value = 0
324
+
325
+ hidden_states = torch.nn.functional.pad(
326
+ hidden_states.transpose(-1, -2),
327
+ pad=(s, s),
328
+ value=pad_value
329
+ ).transpose(-1, -2)
330
+
331
+ # Make blocks
332
+ hidden_states = hidden_states.unfold(-2, size=size, step=step).transpose(-1, -2)
333
+
334
+ # Fix case where block_size == sparsify_factor
335
+ if odd_offset:
336
+ hidden_states = hidden_states[..., :-1, :, :]
337
+
338
+ # Indexes for selection
339
+ u = (size - self.block_size * 3 // self.sparsity_factor) // 2 + odd_offset
340
+ s = self.sparse_block_size
341
+
342
+ u_ = u + odd_offset
343
+ return torch.cat([hidden_states[..., u-s:u, :], hidden_states[..., -u_:-u_+s, :]], dim=-2)
344
+
345
+ def cat_global_sparse_local_tokens(self, x_global, x_sparse=None, x_local=None, dim=-2):
346
+
347
+ n, h, b, t, d = x_local.size()
348
+ x_global = x_global.unsqueeze(-3).expand(-1, -1, b, -1, -1)
349
+ if x_sparse is not None:
350
+ return torch.cat([x_global, x_sparse, x_local], dim=dim)
351
+ return torch.cat([x_global, x_local], dim=dim)
352
+
353
+ def chunk(self, x, n_blocks):
354
+
355
+ t, d = x.size()[-2:]
356
+ return x.reshape(*x.size()[:-2], n_blocks, -1, d)
357
+
358
+
359
+ class LSGBartEncoderAttention(BaseSelfAttention):
360
+ '''
361
+ Compute local attention with overlapping blocs
362
+ Use global attention for tokens with highest norm
363
+ '''
364
+ def __init__(
365
+ self,
366
+ config,
367
+ embed_dim,
368
+ num_heads,
369
+ dropout
370
+ ):
371
+
372
+ super().__init__(embed_dim, num_heads, dropout)
373
+
374
+ self.block_size = config.block_size
375
+ self.sparse_block_size = config.sparse_block_size
376
+ self.num_global_tokens = config.num_global_tokens
377
+ self.sparsity_factor = config.sparsity_factor
378
+
379
+ self.attention = LSGAttentionProduct(
380
+ config,
381
+ block_size=config.block_size,
382
+ sparse_block_size=config.sparse_block_size,
383
+ sparsity_factor=self.sparsity_factor,
384
+ )
385
+
386
+ self.full_attention = BaseAttentionProduct(config)
387
+
388
+ sparse_functions = {
389
+ "norm": self.get_sparse_tokens_with_norm,
390
+ "pooling": self.get_sparse_tokens_with_pooling,
391
+ "lsh": self.get_sparse_tokens_with_lsh,
392
+ "stride": self.get_sparse_tokens_with_stride,
393
+ }
394
+
395
+ self.sparsity_type = config.sparsity_type
396
+ self.get_sparse_elements = sparse_functions[self.sparsity_type]
397
+
398
+ if config.sparsity_type == "stride":
399
+ if config.sparsity_factor > config.encoder_attention_heads:
400
+ logger.warning(
401
+ "Warning: sparsity_factor > encoder_attention_heads is not recommended for stride sparsity"
402
+ )
403
+
404
+ if config.sparsity_type == "lsh":
405
+ self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
406
+
407
+ def get_sparse_tokens_with_norm(self, keys, values, mask):
408
+
409
+ if self.sparsity_factor == 1:
410
+ return keys, values, mask
411
+
412
+ with torch.no_grad():
413
+
414
+ block_size = min(self.block_size, self.sparse_block_size)
415
+ key_norm = keys.detach().norm(dim=-1, keepdim=True)
416
+ key_norm = key_norm * ~mask.transpose(-1, -2).bool()
417
+ key_norm = self.chunk(key_norm, block_size)
418
+
419
+ n, h, b, t, d = key_norm.size()
420
+
421
+ idx = key_norm.argsort(dim=-2)
422
+ del key_norm
423
+ idx += (torch.arange(b, device=keys.device)*t).reshape(1, 1, b, 1, 1)
424
+
425
+ split = (t - block_size // self.sparsity_factor, block_size // self.sparsity_factor)
426
+ sparse_idx = idx.split(split, -2)[-1].reshape(n, h, -1, 1)
427
+
428
+ d = keys.size()[-1]
429
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
430
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
431
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
432
+
433
+ return keys, values, mask
434
+
435
+ def get_sparse_tokens_with_pooling(self, keys, values, mask):
436
+
437
+ if self.sparsity_factor == 1:
438
+ return keys, values, mask
439
+
440
+ keys = self.chunk(keys, self.sparsity_factor)
441
+ values = self.chunk(values, self.sparsity_factor)
442
+
443
+ n, h, b, t, d = keys.size()
444
+ mask = mask.reshape(n, 1, b, 1, t)
445
+ mask = ~mask.transpose(-1, -2).bool()
446
+
447
+ keys = keys * mask
448
+ values = values * mask
449
+
450
+ mask = mask.sum(dim=-2)
451
+ keys = keys.sum(dim=-2) / (mask + 1e-6)
452
+ values = values.sum(dim=-2) / (mask + 1e-6)
453
+
454
+ mask = - (1. - mask.clamp(0, 1)) * 1e4
455
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
456
+
457
+ def get_sparse_tokens_with_stride(self, keys, values, mask):
458
+
459
+ if self.sparsity_factor == 1:
460
+ return keys, values, mask
461
+
462
+ n, h, t, d = keys.size()
463
+ sparse_idx = torch.arange(t // self.sparsity_factor, device=keys.device) * self.sparsity_factor
464
+ sparse_idx = sparse_idx.reshape(1, 1, -1, 1) + (torch.arange(h, device=keys.device) % self.sparsity_factor).reshape(1, h, 1, 1)
465
+ sparse_idx = sparse_idx.expand(n, h, -1, 1)
466
+
467
+ keys = keys.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
468
+ values = values.gather(dim=-2, index=sparse_idx.expand(-1, -1, -1, d))
469
+ mask = mask.expand(-1, h, -1, -1).transpose(-1, -2).gather(dim=-2, index=sparse_idx).transpose(-1, -2)
470
+
471
+ return keys, values, mask
472
+
473
+ def get_sparse_tokens_with_lsh(self, keys, values, mask):
474
+
475
+ if self.sparsity_factor == 1:
476
+ return keys, values, mask
477
+
478
+ block_size = min(self.block_size, self.sparse_block_size)
479
+ keys = self.chunk(keys, block_size)
480
+ values = self.chunk(values, block_size)
481
+
482
+ n, h, b, t, d = keys.size()
483
+ mask = mask.reshape(n, 1, b, 1, t)
484
+ mask = ~mask.transpose(-1, -2).bool()
485
+
486
+ keys = keys * mask
487
+ values = values * mask
488
+ mask = mask.expand(-1, h, -1, -1, -1).float()
489
+
490
+ extra_factor = 1
491
+
492
+ for _ in range(self.lsh_num_pre_rounds):
493
+ keys, values, mask = self.lsg_round(keys, values, mask, t*extra_factor)
494
+
495
+ keys, values, mask = self.lsg_round(keys, values, mask, t//self.sparsity_factor)
496
+ keys /= mask + 1e-8
497
+ values /= mask + 1e-8
498
+
499
+ mask = -10000 * (1. - mask.clamp(0, 1))
500
+
501
+ return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.transpose(-1, -2).reshape(n, h, 1, -1)
502
+
503
+ def lsg_round(self, keys, values, mask, output_size):
504
+
505
+ with torch.no_grad():
506
+
507
+ n_hashes = output_size // 2
508
+ n, h, b, t, d = keys.size()
509
+ binary_mask = mask.clamp(0, 1)
510
+
511
+ indexes = (torch.nn.functional.normalize(keys, dim=-1) * binary_mask) @ torch.randn(1, h, 1, d, n_hashes, device=keys.device)
512
+ indexes = torch.cat([indexes, -indexes], dim=-1).argmax(dim=-1, keepdim=True)
513
+
514
+ n, h, b, t, d = keys.size()
515
+
516
+ x_ = torch.zeros(n, h, b, output_size, d, device=keys.device)
517
+ mask_ = torch.zeros(n, h, b, output_size, 1, device=keys.device)
518
+ keys = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=keys)
519
+ values = torch.scatter_add(x_, dim=-2, index=indexes.expand(-1, -1, -1, -1, d), src=values)
520
+ mask = torch.scatter_add(mask_, dim=-2, index=indexes, src=mask)
521
+
522
+ return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
523
+
524
+ def forward(
525
+ self,
526
+ hidden_states,
527
+ attention_mask=None,
528
+ layer_head_mask=None,
529
+ output_attentions=False
530
+ ):
531
+
532
+ query_layer, key_layer, value_layer = self.project_QKV(hidden_states)
533
+ outputs = self.not_causal_forward(
534
+ query_layer,
535
+ key_layer,
536
+ value_layer,
537
+ attention_mask=attention_mask[:, :, :1, :],
538
+ head_mask=layer_head_mask,
539
+ output_attentions=output_attentions
540
+ )
541
+
542
+ return self.out_proj(outputs), None, None
543
+
544
+ def not_causal_forward(
545
+ self,
546
+ query_layer,
547
+ key_layer,
548
+ value_layer,
549
+ attention_mask=None,
550
+ head_mask=None,
551
+ output_attentions=False,
552
+ ):
553
+
554
+ n, h, t, d = query_layer.size()
555
+
556
+ # Cat global mask
557
+ attention_mask = torch.nn.functional.pad(attention_mask, (self.num_global_tokens, 0), value=0)
558
+
559
+ # Use normal attention if local attention covers every tokens
560
+ if t <= 2 * self.block_size + self.num_global_tokens:
561
+ context_layer = self.full_attention(
562
+ query_layer=query_layer,
563
+ key_layer=key_layer,
564
+ value_layer=value_layer,
565
+ attention_mask=attention_mask
566
+ )
567
+
568
+ if head_mask is not None:
569
+ context_layer = context_layer * head_mask[:, :, :1, :1]
570
+ return self.reshape_output(context_layer)
571
+
572
+ # Split input into global tokens and other tokens
573
+ split = (self.num_global_tokens, t - self.num_global_tokens)
574
+ global_query, query_layer = query_layer.split(split, dim=-2)
575
+
576
+ # Get global_attention
577
+ bos = self.full_attention(
578
+ query_layer=global_query,
579
+ key_layer=key_layer,
580
+ value_layer=value_layer,
581
+ attention_mask=attention_mask
582
+ )
583
+
584
+ # Split K Q M on global and non global
585
+ global_key, key_layer = key_layer.split(split, dim=-2)
586
+ global_value, value_layer = value_layer.split(split, dim=-2)
587
+ global_mask, attention_mask = attention_mask.split(split, dim=-1)
588
+
589
+ n, h, t, d = key_layer.size()
590
+
591
+ # Get sparse idx
592
+ sparse_key, sparse_value, sparse_mask = (None, None, None)
593
+
594
+ if self.sparse_block_size and self.sparsity_factor > 0:
595
+ sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask)
596
+
597
+ # Expand masks on heads
598
+ attention_mask = attention_mask.expand(-1, h, -1, -1)
599
+ global_mask = global_mask.expand(-1, h, -1, -1)
600
+
601
+ # Compute dot product attention
602
+ context_layer = self.attention(
603
+ query_layer,
604
+ key_layer,
605
+ value_layer,
606
+ attention_mask,
607
+ sparse_key=sparse_key,
608
+ sparse_value=sparse_value,
609
+ sparse_mask=sparse_mask,
610
+ global_key=global_key,
611
+ global_value=global_value,
612
+ global_mask=global_mask
613
+ )
614
+
615
+ # Merge global and local-sparse tokens
616
+ context_layer = torch.cat([bos, context_layer], dim=-2)
617
+ if head_mask is not None:
618
+ context_layer = context_layer * head_mask[:, :, :1, :1]
619
+ context_layer = self.reshape_output(context_layer)
620
+
621
+ return context_layer
622
+
623
+ def chunk(self, x, chunk_size):
624
+
625
+ n, h, t, d = x.size()
626
+ return x.reshape(n, h, -1, chunk_size, d)
627
+
628
+
629
+ class LSGBartDecoderAttention(nn.Module):
630
+
631
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
632
+
633
+ def __init__(
634
+ self,
635
+ embed_dim,
636
+ num_heads,
637
+ dropout=0.0,
638
+ is_decoder=False,
639
+ bias=True,
640
+ ):
641
+
642
+ super().__init__()
643
+ self.embed_dim = embed_dim
644
+ self.num_heads = num_heads
645
+ self.dropout = dropout
646
+ self.head_dim = embed_dim // num_heads
647
+
648
+ if (self.head_dim * num_heads) != self.embed_dim:
649
+ raise ValueError(
650
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
651
+ f" and `num_heads`: {num_heads})."
652
+ )
653
+ self.scaling = self.head_dim ** -0.5
654
+ self.is_decoder = is_decoder
655
+
656
+ self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
657
+ self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
658
+ self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
659
+ self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
660
+
661
+ def _shape(self, tensor, seq_len, bsz):
662
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
663
+
664
+ def forward(
665
+ self,
666
+ hidden_states,
667
+ key_value_states=None,
668
+ past_key_value=None,
669
+ attention_mask=None,
670
+ layer_head_mask=None,
671
+ output_attentions=False,
672
+ ):
673
+
674
+ # if key_value_states are provided this layer is used as a cross-attention layer
675
+ # for the decoder
676
+ is_cross_attention = key_value_states is not None
677
+
678
+ bsz, tgt_len, _ = hidden_states.size()
679
+
680
+ # get query proj
681
+ query_states = self.q_proj(hidden_states) * self.scaling
682
+ # get key, value proj
683
+ if is_cross_attention and past_key_value is not None:
684
+ # reuse k,v, cross_attentions
685
+ key_states = past_key_value[0]
686
+ value_states = past_key_value[1]
687
+ elif is_cross_attention:
688
+ # cross_attentions
689
+ key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
690
+ value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
691
+ elif past_key_value is not None:
692
+ # reuse k, v, self_attention
693
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
694
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
695
+ key_states = torch.cat([past_key_value[0], key_states], dim=2)
696
+ value_states = torch.cat([past_key_value[1], value_states], dim=2)
697
+ else:
698
+ # self_attention
699
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
700
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
701
+
702
+ if self.is_decoder:
703
+ # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
704
+ # Further calls to cross_attention layer can then reuse all cross-attention
705
+ # key/value_states (first "if" case)
706
+ # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
707
+ # all previous decoder key/value_states. Further calls to uni-directional self-attention
708
+ # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
709
+ # if encoder bi-directional self-attention `past_key_value` is always `None`
710
+ past_key_value = (key_states, value_states)
711
+
712
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
713
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
714
+ key_states = key_states.view(*proj_shape)
715
+ value_states = value_states.view(*proj_shape)
716
+
717
+ src_len = key_states.size(1)
718
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
719
+
720
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
721
+ raise ValueError(
722
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is {attn_weights.size()}"
723
+ )
724
+
725
+ if attention_mask is not None:
726
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
727
+ raise ValueError(
728
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
729
+ )
730
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
731
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
732
+
733
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
734
+
735
+ if layer_head_mask is not None:
736
+ if layer_head_mask.size() != (self.num_heads,):
737
+ raise ValueError(
738
+ f"Head mask for a single layer should be of size {(self.num_heads,)}, but is {layer_head_mask.size()}"
739
+ )
740
+ attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
741
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
742
+
743
+ if output_attentions:
744
+ # this operation is a bit awkward, but it's required to
745
+ # make sure that attn_weights keeps its gradient.
746
+ # In order to do so, attn_weights have to be reshaped
747
+ # twice and have to be reused in the following
748
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
749
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
750
+ else:
751
+ attn_weights_reshaped = None
752
+
753
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
754
+
755
+ attn_output = torch.bmm(attn_probs, value_states)
756
+
757
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
758
+ raise ValueError(
759
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is {attn_output.size()}"
760
+ )
761
+
762
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
763
+ attn_output = attn_output.transpose(1, 2)
764
+
765
+ # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
766
+ # partitioned aross GPUs when using tensor-parallelism.
767
+ attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
768
+
769
+ attn_output = self.out_proj(attn_output)
770
+
771
+ return attn_output, attn_weights_reshaped, past_key_value
772
+
773
+
774
+ class LSGBartLearnedPositionalEmbedding(nn.Embedding):
775
+ """
776
+ This module learns positional embeddings up to a fixed maximum size.
777
+ """
778
+
779
+ def __init__(self, num_embeddings, embedding_dim):
780
+ # Bart is set up so that if padding_idx is specified then offset the embedding ids by 2
781
+ # and adjust num_embeddings appropriately. Other models don't have this hack
782
+ self.offset = 2
783
+ super().__init__(num_embeddings + self.offset, embedding_dim)
784
+
785
+ def forward(self, input_ids_shape, past_key_values_length=0):
786
+
787
+ """`input_ids_shape` is expected to be [bsz x seqlen]."""
788
+ bsz, seq_len = input_ids_shape[:2]
789
+ positions = torch.arange(
790
+ past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
791
+ )
792
+ return super().forward(positions + self.offset)
793
+
794
+
795
+ class LSGBartEncoderLayer(nn.Module):
796
+
797
+ def __init__(self, config):
798
+
799
+ super().__init__()
800
+ self.embed_dim = config.d_model
801
+ self.self_attn = LSGBartEncoderAttention(
802
+ config=config,
803
+ embed_dim=self.embed_dim,
804
+ num_heads=config.encoder_attention_heads,
805
+ dropout=config.attention_dropout,
806
+ )
807
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
808
+ self.dropout = config.dropout
809
+ self.activation_fn = ACT2FN[config.activation_function]
810
+ self.activation_dropout = config.activation_dropout
811
+ self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
812
+ self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
813
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
814
+
815
+ def forward(
816
+ self,
817
+ hidden_states,
818
+ attention_mask,
819
+ layer_head_mask,
820
+ output_attentions=False,
821
+ ):
822
+ """
823
+ Args:
824
+ hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)`
825
+ attention_mask (:obj:`torch.FloatTensor`): attention mask of size
826
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
827
+ layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
828
+ `(encoder_attention_heads,)`.
829
+ output_attentions (:obj:`bool`, `optional`):
830
+ Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
831
+ returned tensors for more detail.
832
+ """
833
+ residual = hidden_states
834
+ hidden_states, attn_weights, _ = self.self_attn(
835
+ hidden_states=hidden_states,
836
+ attention_mask=attention_mask,
837
+ layer_head_mask=layer_head_mask,
838
+ output_attentions=output_attentions,
839
+ )
840
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
841
+ hidden_states = residual + hidden_states
842
+ hidden_states = self.self_attn_layer_norm(hidden_states)
843
+
844
+ residual = hidden_states
845
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
846
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
847
+ hidden_states = self.fc2(hidden_states)
848
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
849
+ hidden_states = residual + hidden_states
850
+ hidden_states = self.final_layer_norm(hidden_states)
851
+
852
+ if hidden_states.dtype == torch.float16 and (
853
+ torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
854
+ ):
855
+ clamp_value = torch.finfo(hidden_states.dtype).max - 1000
856
+ hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
857
+
858
+ outputs = (hidden_states,)
859
+
860
+ if output_attentions:
861
+ outputs += (attn_weights,)
862
+
863
+ return outputs
864
+
865
+
866
+ class LSGBartDecoderLayer(nn.Module):
867
+
868
+ def __init__(self, config):
869
+
870
+ super().__init__()
871
+ self.embed_dim = config.d_model
872
+
873
+ self.self_attn = LSGBartDecoderAttention(
874
+ embed_dim=self.embed_dim,
875
+ num_heads=config.decoder_attention_heads,
876
+ dropout=config.attention_dropout,
877
+ is_decoder=True,
878
+ )
879
+ self.dropout = config.dropout
880
+ self.activation_fn = ACT2FN[config.activation_function]
881
+ self.activation_dropout = config.activation_dropout
882
+
883
+ self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
884
+ self.encoder_attn = LSGBartDecoderAttention(
885
+ self.embed_dim,
886
+ config.decoder_attention_heads,
887
+ dropout=config.attention_dropout,
888
+ is_decoder=True,
889
+ )
890
+ self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
891
+ self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
892
+ self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
893
+ self.final_layer_norm = nn.LayerNorm(self.embed_dim)
894
+
895
+ def forward(
896
+ self,
897
+ hidden_states,
898
+ attention_mask=None,
899
+ encoder_hidden_states=None,
900
+ encoder_attention_mask=None,
901
+ layer_head_mask=None,
902
+ cross_attn_layer_head_mask=None,
903
+ past_key_value=None,
904
+ output_attentions=False,
905
+ use_cache=True,
906
+ ):
907
+ """
908
+ Args:
909
+ hidden_states (:obj:`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
910
+ attention_mask (:obj:`torch.FloatTensor`): attention mask of size
911
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
912
+ encoder_hidden_states (:obj:`torch.FloatTensor`): cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
913
+ encoder_attention_mask (:obj:`torch.FloatTensor`): encoder attention mask of size
914
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
915
+ layer_head_mask (:obj:`torch.FloatTensor`): mask for attention heads in a given layer of size
916
+ `(encoder_attention_heads,)`.
917
+ cross_attn_layer_head_mask (:obj:`torch.FloatTensor`): mask for cross-attention heads in a given layer of
918
+ size `(decoder_attention_heads,)`.
919
+ past_key_value (:obj:`Tuple(torch.FloatTensor)`): cached past key and value projection states
920
+ output_attentions (:obj:`bool`, `optional`):
921
+ Whether or not to return the attentions tensors of all attention layers. See ``attentions`` under
922
+ returned tensors for more detail.
923
+ """
924
+ residual = hidden_states
925
+
926
+ # Self Attention
927
+ # decoder uni-directional self-attention cached key/values tuple is at positions 1,2
928
+ self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
929
+ # add present self-attn cache to positions 1,2 of present_key_value tuple
930
+
931
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
932
+ hidden_states=hidden_states,
933
+ past_key_value=self_attn_past_key_value,
934
+ attention_mask=attention_mask,
935
+ layer_head_mask=layer_head_mask,
936
+ output_attentions=output_attentions,
937
+ )
938
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
939
+ hidden_states = residual + hidden_states
940
+ hidden_states = self.self_attn_layer_norm(hidden_states)
941
+
942
+ # Cross-Attention Block
943
+ cross_attn_present_key_value = None
944
+ cross_attn_weights = None
945
+ if encoder_hidden_states is not None:
946
+ residual = hidden_states
947
+
948
+ # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
949
+ cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
950
+
951
+ hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
952
+ hidden_states=hidden_states,
953
+ key_value_states=encoder_hidden_states,
954
+ attention_mask=encoder_attention_mask,
955
+ layer_head_mask=cross_attn_layer_head_mask,
956
+ past_key_value=cross_attn_past_key_value,
957
+ output_attentions=output_attentions,
958
+ )
959
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
960
+ hidden_states = residual + hidden_states
961
+ hidden_states = self.encoder_attn_layer_norm(hidden_states)
962
+
963
+ # add cross-attn to positions 3,4 of present_key_value tuple
964
+ present_key_value = present_key_value + cross_attn_present_key_value
965
+
966
+ # Fully Connected
967
+ residual = hidden_states
968
+ hidden_states = self.activation_fn(self.fc1(hidden_states))
969
+ hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
970
+ hidden_states = self.fc2(hidden_states)
971
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
972
+ hidden_states = residual + hidden_states
973
+ hidden_states = self.final_layer_norm(hidden_states)
974
+
975
+ outputs = (hidden_states,)
976
+
977
+ if output_attentions:
978
+ outputs += (self_attn_weights, cross_attn_weights)
979
+
980
+ if use_cache:
981
+ outputs += (present_key_value,)
982
+
983
+ return outputs
984
+
985
+
986
+ class LSGBartClassificationHead(nn.Module):
987
+ """Head for sentence-level classification tasks."""
988
+
989
+ def __init__(
990
+ self,
991
+ input_dim,
992
+ inner_dim,
993
+ num_classes,
994
+ pooler_dropout,
995
+ ):
996
+
997
+ super().__init__()
998
+ self.dense = nn.Linear(input_dim, inner_dim)
999
+ self.dropout = nn.Dropout(p=pooler_dropout)
1000
+ self.out_proj = nn.Linear(inner_dim, num_classes)
1001
+
1002
+ def forward(self, hidden_states):
1003
+
1004
+ hidden_states = self.dropout(hidden_states)
1005
+ hidden_states = self.dense(hidden_states)
1006
+ hidden_states = torch.tanh(hidden_states)
1007
+ hidden_states = self.dropout(hidden_states)
1008
+ hidden_states = self.out_proj(hidden_states)
1009
+ return hidden_states
1010
+
1011
+
1012
+ class LSGBartPretrainedModel(PreTrainedModel):
1013
+
1014
+ config_class = LSGBartConfig
1015
+ base_model_prefix = "model"
1016
+ supports_gradient_checkpointing = True
1017
+ _keys_to_ignore_on_load_unexpected = [r"encoder\.version", r"decoder\.version"]
1018
+
1019
+ def _init_weights(self, module):
1020
+
1021
+ std = self.config.init_std
1022
+ if isinstance(module, nn.Linear):
1023
+ module.weight.data.normal_(mean=0.0, std=std)
1024
+ if module.bias is not None:
1025
+ module.bias.data.zero_()
1026
+ elif isinstance(module, nn.Embedding):
1027
+ module.weight.data.normal_(mean=0.0, std=std)
1028
+ if module.padding_idx is not None:
1029
+ module.weight.data[module.padding_idx].zero_()
1030
+
1031
+ def _set_gradient_checkpointing(self, module, value=False):
1032
+
1033
+ if isinstance(module, (LSGBartDecoder, LSGBartEncoder)):
1034
+ module.gradient_checkpointing = value
1035
+
1036
+ @property
1037
+ def dummy_inputs(self):
1038
+ pad_token = self.config.pad_token_id
1039
+ input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
1040
+ dummy_inputs = {
1041
+ "attention_mask": input_ids.ne(pad_token),
1042
+ "input_ids": input_ids,
1043
+ }
1044
+ return dummy_inputs
1045
+
1046
+
1047
+ class PretrainedLSGBartModel(LSGBartPretrainedModel):
1048
+
1049
+ def __init_subclass__(self):
1050
+ warnings.warn(
1051
+ "The class `PretrainedBartModel` has been depreciated, please use `LSGBartPretrainedModel` instead.",
1052
+ FutureWarning,
1053
+ )
1054
+
1055
+
1056
+ class LSGBartEncoder(LSGBartPretrainedModel):
1057
+ """
1058
+ Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
1059
+ :class:`BartEncoderLayer`.
1060
+ Args:
1061
+ config: BartConfig
1062
+ embed_tokens (nn.Embedding): output embedding
1063
+ """
1064
+
1065
+ def __init__(self, config, embed_tokens=None):
1066
+
1067
+ super().__init__(config)
1068
+ self.dropout = config.dropout
1069
+ self.layerdrop = config.encoder_layerdrop
1070
+
1071
+ embed_dim = config.d_model
1072
+ self.padding_idx = config.pad_token_id
1073
+ self.max_source_positions = config.max_position_embeddings
1074
+ self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
1075
+
1076
+ if embed_tokens is not None:
1077
+ self.embed_tokens = embed_tokens
1078
+ else:
1079
+ self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
1080
+
1081
+ self.embed_positions = LSGBartLearnedPositionalEmbedding(
1082
+ config.max_position_embeddings,
1083
+ embed_dim,
1084
+ )
1085
+ self.layers = nn.ModuleList([LSGBartEncoderLayer(config) for _ in range(config.encoder_layers)])
1086
+ self.layernorm_embedding = nn.LayerNorm(embed_dim)
1087
+
1088
+ #
1089
+ assert hasattr(config, "num_global_tokens")
1090
+ self.num_global_tokens = config.num_global_tokens
1091
+ self.pad_idx = config.pad_token_id
1092
+
1093
+ assert hasattr(config, "block_size") and hasattr(config, "adaptive")
1094
+ self.block_size = config.block_size
1095
+ self.adaptive = config.adaptive
1096
+ self.pool_with_global = config.pool_with_global
1097
+ self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
1098
+
1099
+ self.global_embeddings = nn.Embedding(512, embedding_dim=config.d_model)
1100
+
1101
+ self.gradient_checkpointing = False
1102
+
1103
+ # Initialize weights and apply final processing
1104
+ self.post_init()
1105
+
1106
+ def get_input_embeddings(self):
1107
+ return self.embed_tokens
1108
+
1109
+ def set_input_embeddings(self, value):
1110
+ self.embed_tokens = value
1111
+
1112
+ def forward(self,
1113
+ input_ids=None,
1114
+ attention_mask=None,
1115
+ head_mask=None,
1116
+ inputs_embeds=None,
1117
+ output_attentions=None,
1118
+ output_hidden_states=None,
1119
+ return_dict=None
1120
+ ):
1121
+
1122
+
1123
+ inputs_ = input_ids if input_ids is not None else inputs_embeds
1124
+ n, t = inputs_.size()[:2]
1125
+
1126
+ if attention_mask is None:
1127
+ attention_mask = torch.ones(n, t, device=inputs_.device)
1128
+
1129
+ b = self.block_size * 2
1130
+ pad = t % self.block_size
1131
+
1132
+ # Check if t is multiple of block_size and pad
1133
+ if t > b and pad > 0:
1134
+ pad_length = self.block_size - pad
1135
+ if input_ids is not None:
1136
+ input_ids = torch.nn.functional.pad(input_ids, (0, pad_length), value=self.pad_idx)
1137
+ else:
1138
+ inputs_embeds = torch.nn.functional.pad(inputs_embeds.transpose(-1, -2), (0, pad_length), value=0.).transpose(-1, -2)
1139
+ attention_mask = torch.nn.functional.pad(attention_mask, (0, pad_length), value=0)
1140
+
1141
+ # else adaptive sequence length
1142
+ elif self.adaptive:
1143
+ # Get last non zero mask index
1144
+ s = int(attention_mask.cumsum(dim=-1).argmax(dim=-1).max()) + 1
1145
+ if s < t and self.block_size is not None:
1146
+ s = max(2, s // self.block_size + 1) * self.block_size if s > b else s
1147
+ if input_ids is not None:
1148
+ input_ids = input_ids[:, :s]
1149
+ else:
1150
+ inputs_embeds = inputs_embeds[:, :s]
1151
+ attention_mask = attention_mask[:, :s]
1152
+
1153
+ n, t_ = attention_mask.size()
1154
+
1155
+ encoder_outputs = self.forward_with_adaptive(
1156
+ input_ids=input_ids,
1157
+ attention_mask=attention_mask,
1158
+ head_mask=head_mask,
1159
+ inputs_embeds=inputs_embeds,
1160
+ output_attentions=output_attentions,
1161
+ output_hidden_states=output_hidden_states,
1162
+ return_dict=return_dict,
1163
+ )
1164
+
1165
+ context = encoder_outputs[0]
1166
+ diff = t - t_
1167
+
1168
+ if self.pass_global_tokens_to_decoder:
1169
+ offset = self.num_global_tokens
1170
+ else:
1171
+ if self.pool_with_global:
1172
+ context[:, self.num_global_tokens] = context[:, 0]
1173
+ context = context[..., self.num_global_tokens:, :]
1174
+ offset = 0
1175
+
1176
+ # Adapt sequence to initial shape
1177
+ if diff > 0:
1178
+ context = torch.nn.functional.pad(context.transpose(-1, -2), pad=(0, diff), value=0).transpose(-1, -2)
1179
+ elif diff < 0:
1180
+ context = context[:, :t + offset]
1181
+
1182
+ if return_dict:
1183
+ encoder_outputs.last_hidden_state = context
1184
+ else:
1185
+ encoder_outputs = (context, ) + encoder_outputs[1:]
1186
+
1187
+ return encoder_outputs
1188
+
1189
+ def forward_with_adaptive(
1190
+ self,
1191
+ input_ids=None,
1192
+ attention_mask=None,
1193
+ head_mask=None,
1194
+ inputs_embeds=None,
1195
+ output_attentions=None,
1196
+ output_hidden_states=None,
1197
+ return_dict=None,
1198
+ ):
1199
+
1200
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1201
+ output_hidden_states = (
1202
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1203
+ )
1204
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1205
+
1206
+ # retrieve input_ids and inputs_embeds
1207
+ if input_ids is not None and inputs_embeds is not None:
1208
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
1209
+ elif input_ids is not None:
1210
+ input_shape = input_ids.size()
1211
+ input_ids = input_ids.view(-1, input_shape[-1])
1212
+ elif inputs_embeds is not None:
1213
+ input_shape = inputs_embeds.size()[:-1]
1214
+ else:
1215
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1216
+
1217
+ if inputs_embeds is None:
1218
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
1219
+
1220
+ embed_pos = self.embed_positions(input_shape)
1221
+ hidden_states = inputs_embeds + embed_pos
1222
+
1223
+ # Add global tokens
1224
+ n, t, d = hidden_states.size()
1225
+ global_idx = torch.arange(self.num_global_tokens, device=hidden_states.device).reshape(1, -1)
1226
+ hidden_states = torch.cat([self.global_embeddings(global_idx).expand(n, -1, -1), hidden_states], dim=-2)
1227
+
1228
+ hidden_states = self.layernorm_embedding(hidden_states)
1229
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
1230
+
1231
+ # expand attention_mask
1232
+ if attention_mask is not None:
1233
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1234
+ attention_mask = _expand_mask(attention_mask, inputs_embeds.dtype)
1235
+
1236
+ encoder_states = () if output_hidden_states else None
1237
+ all_attentions = () if output_attentions else None
1238
+
1239
+ # check if head_mask has a correct number of layers specified if desired
1240
+ if head_mask is not None:
1241
+ if head_mask.size()[0] != (len(self.layers)):
1242
+ raise ValueError(
1243
+ f"The head_mask should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
1244
+ )
1245
+
1246
+ for idx, encoder_layer in enumerate(self.layers):
1247
+ if output_hidden_states:
1248
+ encoder_states = encoder_states + (hidden_states,)
1249
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
1250
+ dropout_probability = random.uniform(0, 1)
1251
+ if self.training and (dropout_probability < self.layerdrop): # skip the layer
1252
+ layer_outputs = (None, None)
1253
+ else:
1254
+ if self.gradient_checkpointing and self.training:
1255
+
1256
+ def create_custom_forward(module):
1257
+ def custom_forward(*inputs):
1258
+ return module(*inputs, output_attentions)
1259
+
1260
+ return custom_forward
1261
+
1262
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1263
+ create_custom_forward(encoder_layer),
1264
+ hidden_states,
1265
+ attention_mask,
1266
+ (head_mask[idx] if head_mask is not None else None),
1267
+ )
1268
+ else:
1269
+ layer_outputs = encoder_layer(
1270
+ hidden_states,
1271
+ attention_mask,
1272
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1273
+ output_attentions=output_attentions,
1274
+ )
1275
+
1276
+ hidden_states = layer_outputs[0]
1277
+
1278
+ if output_attentions:
1279
+ all_attentions = all_attentions + (layer_outputs[1],)
1280
+
1281
+ if output_hidden_states:
1282
+ encoder_states = encoder_states + (hidden_states,)
1283
+
1284
+ if not return_dict:
1285
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
1286
+ return BaseModelOutput(
1287
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
1288
+ )
1289
+
1290
+
1291
+ class LSGBartDecoder(LSGBartPretrainedModel):
1292
+ """
1293
+ Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a :class:`LSGBartDecoderLayer`
1294
+ Args:
1295
+ config: BartConfig
1296
+ embed_tokens (nn.Embedding): output embedding
1297
+ """
1298
+
1299
+ def __init__(self, config, embed_tokens=None):
1300
+
1301
+ super().__init__(config)
1302
+ self.dropout = config.dropout
1303
+ self.layerdrop = config.decoder_layerdrop
1304
+ self.padding_idx = config.pad_token_id
1305
+ self.max_target_positions = config.max_position_embeddings
1306
+ self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
1307
+
1308
+ if embed_tokens is not None:
1309
+ self.embed_tokens = embed_tokens
1310
+ else:
1311
+ self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
1312
+
1313
+ self.embed_positions = LSGBartLearnedPositionalEmbedding(
1314
+ config.max_position_embeddings,
1315
+ config.d_model,
1316
+ )
1317
+ self.layers = nn.ModuleList([LSGBartDecoderLayer(config) for _ in range(config.decoder_layers)])
1318
+ self.layernorm_embedding = nn.LayerNorm(config.d_model)
1319
+
1320
+ self.gradient_checkpointing = False
1321
+
1322
+ # Initialize weights and apply final processing
1323
+ self.post_init()
1324
+
1325
+ def get_input_embeddings(self):
1326
+ return self.embed_tokens
1327
+
1328
+ def set_input_embeddings(self, value):
1329
+ self.embed_tokens = value
1330
+
1331
+ def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length):
1332
+ # create causal mask
1333
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1334
+ combined_attention_mask = None
1335
+ if input_shape[-1] > 1:
1336
+ combined_attention_mask = _make_causal_mask(
1337
+ input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length
1338
+ ).to(self.device)
1339
+
1340
+ if attention_mask is not None:
1341
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1342
+ expanded_attn_mask = _expand_mask(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
1343
+ combined_attention_mask = (
1344
+ expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask
1345
+ )
1346
+
1347
+ return combined_attention_mask
1348
+
1349
+ def forward(
1350
+ self,
1351
+ input_ids=None,
1352
+ attention_mask=None,
1353
+ encoder_hidden_states=None,
1354
+ encoder_attention_mask=None,
1355
+ head_mask=None,
1356
+ cross_attn_head_mask=None,
1357
+ past_key_values=None,
1358
+ inputs_embeds=None,
1359
+ use_cache=None,
1360
+ output_attentions=None,
1361
+ output_hidden_states=None,
1362
+ return_dict=None,
1363
+ ):
1364
+
1365
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1366
+ output_hidden_states = (
1367
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1368
+ )
1369
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1370
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1371
+
1372
+ # retrieve input_ids and inputs_embeds
1373
+ if input_ids is not None and inputs_embeds is not None:
1374
+ raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1375
+ elif input_ids is not None:
1376
+ input_shape = input_ids.size()
1377
+ input_ids = input_ids.view(-1, input_shape[-1])
1378
+ elif inputs_embeds is not None:
1379
+ input_shape = inputs_embeds.size()[:-1]
1380
+ else:
1381
+ raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1382
+
1383
+ # past_key_values_length
1384
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
1385
+
1386
+ if inputs_embeds is None:
1387
+ inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
1388
+
1389
+ # Cut
1390
+ if attention_mask is not None:
1391
+ max_len = int(attention_mask.sum(dim=-1).max())
1392
+ inputs_embeds = inputs_embeds[:, :max_len]
1393
+ attention_mask = attention_mask[..., :max_len]
1394
+ input_shape = inputs_embeds.size()[:-1]
1395
+
1396
+ attention_mask = self._prepare_decoder_attention_mask(
1397
+ attention_mask, input_shape, inputs_embeds, past_key_values_length
1398
+ )
1399
+
1400
+ # expand encoder attention mask
1401
+ if encoder_hidden_states is not None and encoder_attention_mask is not None:
1402
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
1403
+ encoder_attention_mask = _expand_mask(encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1])
1404
+
1405
+ # embed positions
1406
+ positions = self.embed_positions(input_shape, past_key_values_length)
1407
+
1408
+ hidden_states = inputs_embeds + positions
1409
+ hidden_states = self.layernorm_embedding(hidden_states)
1410
+
1411
+ hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
1412
+
1413
+ # decoder layers
1414
+ all_hidden_states = () if output_hidden_states else None
1415
+ all_self_attns = () if output_attentions else None
1416
+ all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
1417
+ next_decoder_cache = () if use_cache else None
1418
+
1419
+ # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
1420
+ for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
1421
+ if attn_mask is not None:
1422
+ if attn_mask.size()[0] != (len(self.layers)):
1423
+ raise ValueError(
1424
+ "The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for {head_mask.size()[0]}."
1425
+ )
1426
+
1427
+ for idx, decoder_layer in enumerate(self.layers):
1428
+ # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
1429
+ if output_hidden_states:
1430
+ all_hidden_states += (hidden_states,)
1431
+ dropout_probability = random.uniform(0, 1)
1432
+ if self.training and (dropout_probability < self.layerdrop):
1433
+ continue
1434
+
1435
+ past_key_value = past_key_values[idx] if past_key_values is not None else None
1436
+
1437
+ if self.gradient_checkpointing and self.training:
1438
+
1439
+ if use_cache:
1440
+ logger.warning(
1441
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
1442
+ )
1443
+ use_cache = False
1444
+
1445
+ def create_custom_forward(module):
1446
+ def custom_forward(*inputs):
1447
+ # None for past_key_value
1448
+ return module(*inputs, output_attentions, use_cache)
1449
+
1450
+ return custom_forward
1451
+
1452
+ layer_outputs = torch.utils.checkpoint.checkpoint(
1453
+ create_custom_forward(decoder_layer),
1454
+ hidden_states,
1455
+ attention_mask,
1456
+ encoder_hidden_states,
1457
+ encoder_attention_mask,
1458
+ head_mask[idx] if head_mask is not None else None,
1459
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
1460
+ None,
1461
+ )
1462
+ else:
1463
+
1464
+ layer_outputs = decoder_layer(
1465
+ hidden_states,
1466
+ attention_mask=attention_mask,
1467
+ encoder_hidden_states=encoder_hidden_states,
1468
+ encoder_attention_mask=encoder_attention_mask,
1469
+ layer_head_mask=(head_mask[idx] if head_mask is not None else None),
1470
+ cross_attn_layer_head_mask=(
1471
+ cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
1472
+ ),
1473
+ past_key_value=past_key_value,
1474
+ output_attentions=output_attentions,
1475
+ use_cache=use_cache,
1476
+ )
1477
+ hidden_states = layer_outputs[0]
1478
+
1479
+ if use_cache:
1480
+ next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
1481
+
1482
+ if output_attentions:
1483
+ all_self_attns += (layer_outputs[1],)
1484
+
1485
+ if encoder_hidden_states is not None:
1486
+ all_cross_attentions += (layer_outputs[2],)
1487
+
1488
+ # add hidden states from the last decoder layer
1489
+ if output_hidden_states:
1490
+ all_hidden_states += (hidden_states,)
1491
+
1492
+ next_cache = next_decoder_cache if use_cache else None
1493
+ if not return_dict:
1494
+ return tuple(
1495
+ v
1496
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
1497
+ if v is not None
1498
+ )
1499
+ return BaseModelOutputWithPastAndCrossAttentions(
1500
+ last_hidden_state=hidden_states,
1501
+ past_key_values=next_cache,
1502
+ hidden_states=all_hidden_states,
1503
+ attentions=all_self_attns,
1504
+ cross_attentions=all_cross_attentions,
1505
+ )
1506
+
1507
+
1508
+ class LSGBartModel(LSGBartPretrainedModel):
1509
+
1510
+ def __init__(self, config):
1511
+
1512
+ super().__init__(config)
1513
+
1514
+ padding_idx, vocab_size = config.pad_token_id, config.vocab_size
1515
+ self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
1516
+ self.pass_global_tokens_to_decoder = config.pass_global_tokens_to_decoder
1517
+ self.num_global_tokens = config.num_global_tokens
1518
+ self.encoder = LSGBartEncoder(config, self.shared)
1519
+ self.decoder = LSGBartDecoder(config, self.shared)
1520
+
1521
+ # Initialize weights and apply final processing
1522
+ self.post_init()
1523
+
1524
+ def get_input_embeddings(self):
1525
+ return self.shared
1526
+
1527
+ def set_input_embeddings(self, value):
1528
+ self.shared = value
1529
+ self.encoder.embed_tokens = self.shared
1530
+ self.decoder.embed_tokens = self.shared
1531
+
1532
+ def get_encoder(self):
1533
+ return self.encoder
1534
+
1535
+ def get_decoder(self):
1536
+ return self.decoder
1537
+
1538
+ def forward(
1539
+ self,
1540
+ input_ids=None,
1541
+ attention_mask=None,
1542
+ decoder_input_ids=None,
1543
+ decoder_attention_mask=None,
1544
+ head_mask=None,
1545
+ decoder_head_mask=None,
1546
+ cross_attn_head_mask=None,
1547
+ encoder_outputs=None,
1548
+ past_key_values=None,
1549
+ inputs_embeds=None,
1550
+ decoder_inputs_embeds=None,
1551
+ use_cache=None,
1552
+ output_attentions=None,
1553
+ output_hidden_states=None,
1554
+ return_dict=None,
1555
+ ):
1556
+
1557
+ # different to other models, Bart automatically creates decoder_input_ids from
1558
+ # input_ids if no decoder_input_ids are provided
1559
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
1560
+ decoder_input_ids = shift_tokens_right(
1561
+ input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
1562
+ )
1563
+
1564
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1565
+ output_hidden_states = (
1566
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1567
+ )
1568
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1569
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1570
+
1571
+ if encoder_outputs is None:
1572
+ encoder_outputs = self.encoder(
1573
+ input_ids=input_ids,
1574
+ attention_mask=attention_mask,
1575
+ head_mask=head_mask,
1576
+ inputs_embeds=inputs_embeds,
1577
+ output_attentions=output_attentions,
1578
+ output_hidden_states=output_hidden_states,
1579
+ return_dict=return_dict,
1580
+ )
1581
+ # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
1582
+ elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
1583
+ encoder_outputs = BaseModelOutput(
1584
+ last_hidden_state=encoder_outputs[0],
1585
+ hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
1586
+ attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
1587
+ )
1588
+
1589
+ # Pad mask for global tokens
1590
+ if self.pass_global_tokens_to_decoder:
1591
+ attention_mask = torch.nn.functional.pad(attention_mask, pad=(self.num_global_tokens, 0), value=1)
1592
+
1593
+ # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
1594
+ decoder_outputs = self.decoder(
1595
+ input_ids=decoder_input_ids,
1596
+ attention_mask=decoder_attention_mask,
1597
+ encoder_hidden_states=encoder_outputs[0],
1598
+ encoder_attention_mask=attention_mask,
1599
+ head_mask=decoder_head_mask,
1600
+ cross_attn_head_mask=cross_attn_head_mask,
1601
+ past_key_values=past_key_values,
1602
+ inputs_embeds=decoder_inputs_embeds,
1603
+ use_cache=use_cache,
1604
+ output_attentions=output_attentions,
1605
+ output_hidden_states=output_hidden_states,
1606
+ return_dict=return_dict,
1607
+ )
1608
+
1609
+ if not return_dict:
1610
+ return decoder_outputs + encoder_outputs
1611
+
1612
+ return Seq2SeqModelOutput(
1613
+ last_hidden_state=decoder_outputs.last_hidden_state,
1614
+ past_key_values=decoder_outputs.past_key_values,
1615
+ decoder_hidden_states=decoder_outputs.hidden_states,
1616
+ decoder_attentions=decoder_outputs.attentions,
1617
+ cross_attentions=decoder_outputs.cross_attentions,
1618
+ encoder_last_hidden_state=encoder_outputs.last_hidden_state,
1619
+ encoder_hidden_states=encoder_outputs.hidden_states,
1620
+ encoder_attentions=encoder_outputs.attentions,
1621
+ )
1622
+
1623
+
1624
+ class LSGBartForConditionalGeneration(LSGBartPretrainedModel):
1625
+
1626
+ base_model_prefix = "model"
1627
+ _keys_to_ignore_on_load_missing = [r"final_logits_bias", r"lm_head\.weight"]
1628
+
1629
+ def __init__(self, config):
1630
+
1631
+ super().__init__(config)
1632
+ self.model = LSGBartModel(config)
1633
+ self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
1634
+ self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
1635
+
1636
+ # Initialize weights and apply final processing
1637
+ self.post_init()
1638
+
1639
+ def get_encoder(self):
1640
+ return self.model.get_encoder()
1641
+
1642
+ def get_decoder(self):
1643
+ return self.model.get_decoder()
1644
+
1645
+ def resize_token_embeddings(self, new_num_tokens):
1646
+ new_embeddings = super().resize_token_embeddings(new_num_tokens)
1647
+ self._resize_final_logits_bias(new_num_tokens)
1648
+ return new_embeddings
1649
+
1650
+ def _resize_final_logits_bias(self, new_num_tokens):
1651
+ old_num_tokens = self.final_logits_bias.shape[-1]
1652
+ if new_num_tokens <= old_num_tokens:
1653
+ new_bias = self.final_logits_bias[:, :new_num_tokens]
1654
+ else:
1655
+ extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
1656
+ new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
1657
+ self.register_buffer("final_logits_bias", new_bias)
1658
+
1659
+ def get_output_embeddings(self):
1660
+ return self.lm_head
1661
+
1662
+ def set_output_embeddings(self, new_embeddings):
1663
+ self.lm_head = new_embeddings
1664
+
1665
+ def forward(
1666
+ self,
1667
+ input_ids=None,
1668
+ attention_mask=None,
1669
+ decoder_input_ids=None,
1670
+ decoder_attention_mask=None,
1671
+ head_mask=None,
1672
+ decoder_head_mask=None,
1673
+ cross_attn_head_mask=None,
1674
+ encoder_outputs=None,
1675
+ past_key_values=None,
1676
+ inputs_embeds=None,
1677
+ decoder_inputs_embeds=None,
1678
+ labels=None,
1679
+ use_cache=None,
1680
+ output_attentions=None,
1681
+ output_hidden_states=None,
1682
+ return_dict=None,
1683
+ ):
1684
+
1685
+ r"""
1686
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`):
1687
+ Labels for computing the masked language modeling loss. Indices should either be in ``[0, ...,
1688
+ config.vocab_size]`` or -100 (see ``input_ids`` docstring). Tokens with indices set to ``-100`` are ignored
1689
+ (masked), the loss is only computed for the tokens with labels in ``[0, ..., config.vocab_size]``.
1690
+ Returns:
1691
+ """
1692
+
1693
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1694
+
1695
+ if labels is not None:
1696
+ if decoder_input_ids is None and decoder_inputs_embeds is None:
1697
+ decoder_input_ids = shift_tokens_right(
1698
+ labels, self.config.pad_token_id, self.config.decoder_start_token_id
1699
+ )
1700
+
1701
+ outputs = self.model(
1702
+ input_ids,
1703
+ attention_mask=attention_mask,
1704
+ decoder_input_ids=decoder_input_ids,
1705
+ encoder_outputs=encoder_outputs,
1706
+ decoder_attention_mask=decoder_attention_mask,
1707
+ head_mask=head_mask,
1708
+ decoder_head_mask=decoder_head_mask,
1709
+ cross_attn_head_mask=cross_attn_head_mask,
1710
+ past_key_values=past_key_values,
1711
+ inputs_embeds=inputs_embeds,
1712
+ decoder_inputs_embeds=decoder_inputs_embeds,
1713
+ use_cache=use_cache,
1714
+ output_attentions=output_attentions,
1715
+ output_hidden_states=output_hidden_states,
1716
+ return_dict=return_dict,
1717
+ )
1718
+
1719
+
1720
+ lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
1721
+
1722
+ masked_lm_loss = None
1723
+ if labels is not None:
1724
+ loss_fct = CrossEntropyLoss()
1725
+ masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
1726
+
1727
+ if not return_dict:
1728
+ output = (lm_logits,) + outputs[1:]
1729
+ return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
1730
+
1731
+ return Seq2SeqLMOutput(
1732
+ loss=masked_lm_loss,
1733
+ logits=lm_logits,
1734
+ past_key_values=outputs.past_key_values,
1735
+ decoder_hidden_states=outputs.decoder_hidden_states,
1736
+ decoder_attentions=outputs.decoder_attentions,
1737
+ cross_attentions=outputs.cross_attentions,
1738
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1739
+ encoder_hidden_states=outputs.encoder_hidden_states,
1740
+ encoder_attentions=outputs.encoder_attentions,
1741
+ )
1742
+
1743
+ def prepare_inputs_for_generation(
1744
+ self,
1745
+ decoder_input_ids,
1746
+ past=None,
1747
+ attention_mask=None,
1748
+ head_mask=None,
1749
+ decoder_head_mask=None,
1750
+ cross_attn_head_mask=None,
1751
+ use_cache=None,
1752
+ encoder_outputs=None,
1753
+ **kwargs
1754
+ ):
1755
+ # cut decoder_input_ids if past is used
1756
+ if past is not None:
1757
+ decoder_input_ids = decoder_input_ids[:, -1:]
1758
+
1759
+ return {
1760
+ "input_ids": None, # encoder_outputs is defined. input_ids not needed
1761
+ "encoder_outputs": encoder_outputs,
1762
+ "past_key_values": past,
1763
+ "decoder_input_ids": decoder_input_ids,
1764
+ "attention_mask": attention_mask,
1765
+ "head_mask": head_mask,
1766
+ "decoder_head_mask": decoder_head_mask,
1767
+ "cross_attn_head_mask": cross_attn_head_mask,
1768
+ "use_cache": use_cache, # change this to avoid caching (presumably for debugging)
1769
+ }
1770
+
1771
+ def prepare_decoder_input_ids_from_labels(self, labels):
1772
+ return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
1773
+
1774
+ @staticmethod
1775
+ def _reorder_cache(past, beam_idx):
1776
+ reordered_past = ()
1777
+ for layer_past in past:
1778
+ # cached cross_attention states don't have to be reordered -> they are always the same
1779
+ reordered_past += (
1780
+ tuple(past_state.index_select(0, beam_idx) for past_state in layer_past[:2]) + layer_past[2:],
1781
+ )
1782
+ return reordered_past
1783
+
1784
+
1785
+ class LSGBartForSequenceClassification(LSGBartPretrainedModel):
1786
+
1787
+ def __init__(self, config, **kwargs):
1788
+
1789
+ super().__init__(config, **kwargs)
1790
+ self.model = LSGBartModel(config)
1791
+ self.classification_head = LSGBartClassificationHead(
1792
+ config.d_model,
1793
+ config.d_model,
1794
+ config.num_labels,
1795
+ config.classifier_dropout,
1796
+ )
1797
+ self.model._init_weights(self.classification_head.dense)
1798
+ self.model._init_weights(self.classification_head.out_proj)
1799
+
1800
+ def forward(
1801
+ self,
1802
+ input_ids=None,
1803
+ attention_mask=None,
1804
+ decoder_input_ids=None,
1805
+ decoder_attention_mask=None,
1806
+ head_mask=None,
1807
+ decoder_head_mask=None,
1808
+ cross_attn_head_mask=None,
1809
+ encoder_outputs=None,
1810
+ inputs_embeds=None,
1811
+ decoder_inputs_embeds=None,
1812
+ labels=None,
1813
+ use_cache=None,
1814
+ output_attentions=None,
1815
+ output_hidden_states=None,
1816
+ return_dict=None,
1817
+ ):
1818
+
1819
+ r"""
1820
+ labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1821
+ Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[0, ...,
1822
+ config.num_labels - 1]`. If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1823
+ """
1824
+
1825
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1826
+ if labels is not None:
1827
+ use_cache = False
1828
+
1829
+ if input_ids is None and inputs_embeds is not None:
1830
+ raise NotImplementedError(
1831
+ f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
1832
+ )
1833
+
1834
+ outputs = self.model(
1835
+ input_ids,
1836
+ attention_mask=attention_mask,
1837
+ decoder_input_ids=decoder_input_ids,
1838
+ decoder_attention_mask=decoder_attention_mask,
1839
+ head_mask=head_mask,
1840
+ decoder_head_mask=decoder_head_mask,
1841
+ cross_attn_head_mask=cross_attn_head_mask,
1842
+ encoder_outputs=encoder_outputs,
1843
+ inputs_embeds=inputs_embeds,
1844
+ decoder_inputs_embeds=decoder_inputs_embeds,
1845
+ use_cache=use_cache,
1846
+ output_attentions=output_attentions,
1847
+ output_hidden_states=output_hidden_states,
1848
+ return_dict=return_dict,
1849
+ )
1850
+ hidden_states = outputs[0] # last hidden state
1851
+
1852
+ eos_mask = input_ids.eq(self.config.eos_token_id)
1853
+
1854
+ t, t_ = eos_mask.size()[-1], hidden_states.size()[-2]
1855
+ if t > t_:
1856
+ eos_mask = eos_mask[:, :t_]
1857
+
1858
+ if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
1859
+ raise ValueError("All examples must have the same number of <eos> tokens.")
1860
+ sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
1861
+ :, -1, :
1862
+ ]
1863
+ logits = self.classification_head(sentence_representation)
1864
+
1865
+ loss = None
1866
+ if labels is not None:
1867
+ if self.config.problem_type is None:
1868
+ if self.config.num_labels == 1:
1869
+ self.config.problem_type = "regression"
1870
+ elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1871
+ self.config.problem_type = "single_label_classification"
1872
+ else:
1873
+ self.config.problem_type = "multi_label_classification"
1874
+
1875
+ if self.config.problem_type == "regression":
1876
+ loss_fct = MSELoss()
1877
+ if self.config.num_labels == 1:
1878
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
1879
+ else:
1880
+ loss = loss_fct(logits, labels)
1881
+ elif self.config.problem_type == "single_label_classification":
1882
+ loss_fct = CrossEntropyLoss()
1883
+ loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
1884
+ elif self.config.problem_type == "multi_label_classification":
1885
+ loss_fct = BCEWithLogitsLoss()
1886
+ loss = loss_fct(logits, labels)
1887
+ if not return_dict:
1888
+ output = (logits,) + outputs[1:]
1889
+ return ((loss,) + output) if loss is not None else output
1890
+
1891
+ return Seq2SeqSequenceClassifierOutput(
1892
+ loss=loss,
1893
+ logits=logits,
1894
+ past_key_values=outputs.past_key_values,
1895
+ decoder_hidden_states=outputs.decoder_hidden_states,
1896
+ decoder_attentions=outputs.decoder_attentions,
1897
+ cross_attentions=outputs.cross_attentions,
1898
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
1899
+ encoder_hidden_states=outputs.encoder_hidden_states,
1900
+ encoder_attentions=outputs.encoder_attentions,
1901
+ )
1902
+
1903
+
1904
+ class LSGBartForQuestionAnswering(LSGBartPretrainedModel):
1905
+
1906
+ def __init__(self, config):
1907
+
1908
+ super().__init__(config)
1909
+
1910
+ config.num_labels = 2
1911
+ self.num_labels = config.num_labels
1912
+
1913
+ self.model = LSGBartModel(config)
1914
+ self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
1915
+
1916
+ self.model._init_weights(self.qa_outputs)
1917
+
1918
+ def forward(
1919
+ self,
1920
+ input_ids=None,
1921
+ attention_mask=None,
1922
+ decoder_input_ids=None,
1923
+ decoder_attention_mask=None,
1924
+ head_mask=None,
1925
+ decoder_head_mask=None,
1926
+ cross_attn_head_mask=None,
1927
+ encoder_outputs=None,
1928
+ start_positions=None,
1929
+ end_positions=None,
1930
+ inputs_embeds=None,
1931
+ decoder_inputs_embeds=None,
1932
+ use_cache=None,
1933
+ output_attentions=None,
1934
+ output_hidden_states=None,
1935
+ return_dict=None,
1936
+ ):
1937
+
1938
+ r"""
1939
+ start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1940
+ Labels for position (index) of the start of the labelled span for computing the token classification loss.
1941
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1942
+ are not taken into account for computing the loss.
1943
+ end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
1944
+ Labels for position (index) of the end of the labelled span for computing the token classification loss.
1945
+ Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
1946
+ are not taken into account for computing the loss.
1947
+ """
1948
+
1949
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1950
+ if start_positions is not None and end_positions is not None:
1951
+ use_cache = False
1952
+
1953
+ outputs = self.model(
1954
+ input_ids,
1955
+ attention_mask=attention_mask,
1956
+ decoder_input_ids=decoder_input_ids,
1957
+ decoder_attention_mask=decoder_attention_mask,
1958
+ head_mask=head_mask,
1959
+ decoder_head_mask=decoder_head_mask,
1960
+ cross_attn_head_mask=cross_attn_head_mask,
1961
+ encoder_outputs=encoder_outputs,
1962
+ inputs_embeds=inputs_embeds,
1963
+ decoder_inputs_embeds=decoder_inputs_embeds,
1964
+ use_cache=use_cache,
1965
+ output_attentions=output_attentions,
1966
+ output_hidden_states=output_hidden_states,
1967
+ return_dict=return_dict,
1968
+ )
1969
+
1970
+ sequence_output = outputs[0]
1971
+
1972
+ logits = self.qa_outputs(sequence_output)
1973
+ start_logits, end_logits = logits.split(1, dim=-1)
1974
+ start_logits = start_logits.squeeze(-1).contiguous()
1975
+ end_logits = end_logits.squeeze(-1).contiguous()
1976
+
1977
+ total_loss = None
1978
+ if start_positions is not None and end_positions is not None:
1979
+ # If we are on multi-GPU, split add a dimension
1980
+ if len(start_positions.size()) > 1:
1981
+ start_positions = start_positions.squeeze(-1)
1982
+ if len(end_positions.size()) > 1:
1983
+ end_positions = end_positions.squeeze(-1)
1984
+ # sometimes the start/end positions are outside our model inputs, we ignore these terms
1985
+ ignored_index = start_logits.size(1)
1986
+ start_positions = start_positions.clamp(0, ignored_index)
1987
+ end_positions = end_positions.clamp(0, ignored_index)
1988
+
1989
+ loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
1990
+ start_loss = loss_fct(start_logits, start_positions)
1991
+ end_loss = loss_fct(end_logits, end_positions)
1992
+ total_loss = (start_loss + end_loss) / 2
1993
+
1994
+ if not return_dict:
1995
+ output = (
1996
+ start_logits,
1997
+ end_logits,
1998
+ ) + outputs[1:]
1999
+ return ((total_loss,) + output) if total_loss is not None else output
2000
+
2001
+ return Seq2SeqQuestionAnsweringModelOutput(
2002
+ loss=total_loss,
2003
+ start_logits=start_logits,
2004
+ end_logits=end_logits,
2005
+ past_key_values=outputs.past_key_values,
2006
+ decoder_hidden_states=outputs.decoder_hidden_states,
2007
+ decoder_attentions=outputs.decoder_attentions,
2008
+ cross_attentions=outputs.cross_attentions,
2009
+ encoder_last_hidden_state=outputs.encoder_last_hidden_state,
2010
+ encoder_hidden_states=outputs.encoder_hidden_states,
2011
+ encoder_attentions=outputs.encoder_attentions,
2012
+ )
2013
+
2014
+
2015
+ class LSGBartDecoderWrapper(LSGBartPretrainedModel):
2016
+ """
2017
+ This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
2018
+ used in combination with the :class:`~transformers.EncoderDecoderModel` framework.
2019
+ """
2020
+
2021
+ def __init__(self, config):
2022
+ super().__init__(config)
2023
+ self.decoder = LSGBartDecoder(config)
2024
+
2025
+ def forward(self, *args, **kwargs):
2026
+ return self.decoder(*args, **kwargs)
2027
+
2028
+
2029
+ class LSGBartForCausalLM(LSGBartPretrainedModel):
2030
+
2031
+ def __init__(self, config):
2032
+
2033
+ super().__init__(config)
2034
+ config = copy.deepcopy(config)
2035
+ config.is_decoder = True
2036
+ config.is_encoder_decoder = False
2037
+ self.model = LSGBartDecoderWrapper(config)
2038
+
2039
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
2040
+
2041
+ # Initialize weights and apply final processing
2042
+ self.post_init()
2043
+
2044
+ def get_input_embeddings(self):
2045
+ return self.model.decoder.embed_tokens
2046
+
2047
+ def set_input_embeddings(self, value):
2048
+ self.model.decoder.embed_tokens = value
2049
+
2050
+ def get_output_embeddings(self):
2051
+ return self.lm_head
2052
+
2053
+ def set_output_embeddings(self, new_embeddings):
2054
+ self.lm_head = new_embeddings
2055
+
2056
+ def set_decoder(self, decoder):
2057
+ self.model.decoder = decoder
2058
+
2059
+ def get_decoder(self):
2060
+ return self.model.decoder
2061
+
2062
+ def forward(
2063
+ self,
2064
+ input_ids=None,
2065
+ attention_mask=None,
2066
+ encoder_hidden_states=None,
2067
+ encoder_attention_mask=None,
2068
+ head_mask=None,
2069
+ cross_attn_head_mask=None,
2070
+ past_key_values=None,
2071
+ inputs_embeds=None,
2072
+ labels=None,
2073
+ use_cache=None,
2074
+ output_attentions=None,
2075
+ output_hidden_states=None,
2076
+ return_dict=None,
2077
+ ):
2078
+
2079
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
2080
+ output_hidden_states = (
2081
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
2082
+ )
2083
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
2084
+
2085
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
2086
+ outputs = self.model.decoder(
2087
+ input_ids=input_ids,
2088
+ attention_mask=attention_mask,
2089
+ encoder_hidden_states=encoder_hidden_states,
2090
+ encoder_attention_mask=encoder_attention_mask,
2091
+ head_mask=head_mask,
2092
+ cross_attn_head_mask=cross_attn_head_mask,
2093
+ past_key_values=past_key_values,
2094
+ inputs_embeds=inputs_embeds,
2095
+ use_cache=use_cache,
2096
+ output_attentions=output_attentions,
2097
+ output_hidden_states=output_hidden_states,
2098
+ return_dict=return_dict,
2099
+ )
2100
+
2101
+ logits = self.lm_head(outputs[0])
2102
+
2103
+ loss = None
2104
+ if labels is not None:
2105
+ loss_fct = CrossEntropyLoss()
2106
+ loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
2107
+
2108
+ if not return_dict:
2109
+ output = (logits,) + outputs[1:]
2110
+ return (loss,) + output if loss is not None else output
2111
+
2112
+ return CausalLMOutputWithCrossAttentions(
2113
+ loss=loss,
2114
+ logits=logits,
2115
+ past_key_values=outputs.past_key_values,
2116
+ hidden_states=outputs.hidden_states,
2117
+ attentions=outputs.attentions,
2118
+ cross_attentions=outputs.cross_attentions,
2119
+ )
2120
+
2121
+ def prepare_inputs_for_generation(self, input_ids, past=None, attention_mask=None, use_cache=None, **kwargs):
2122
+ # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
2123
+ if attention_mask is None:
2124
+ attention_mask = input_ids.new_ones(input_ids.shape)
2125
+
2126
+ if past:
2127
+ input_ids = input_ids[:, -1:]
2128
+ # first step, decoder_cached_states are empty
2129
+ return {
2130
+ "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
2131
+ "attention_mask": attention_mask,
2132
+ "past_key_values": past,
2133
+ "use_cache": use_cache,
2134
+ }
2135
+
2136
+ @staticmethod
2137
+ def _reorder_cache(past, beam_idx):
2138
+ reordered_past = ()
2139
+ for layer_past in past:
2140
+ reordered_past += (tuple(past_state.index_select(0, beam_idx) for past_state in layer_past),)
2141
+ return reordered_past
2142
+
2143
+
2144
+ def str_to_class(classname):
2145
+ return getattr(sys.modules[__name__], classname)
2146
+
2147
+ # Register model in Auto API
2148
+ try:
2149
+ LSGBartConfig.register_for_auto_class()
2150
+ for key, value in AUTO_MAP.items():
2151
+ str_to_class(value.split(".")[-1]).register_for_auto_class(key)
2152
+ except:
2153
+ warn("AutoRegister isn't available, you'll have to manually copy modeling.py after .save_pretrained(...).")
2154
+ warn("Update to transformers >= 4.17.0 to fix.")
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50d0ecc7c34b142bf2c8ff8485397795187896aaaf99ce996b716877f1886a68
3
+ size 653914167
special_tokens_map.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "sep_token": "</s>", "pad_token": "<pad>", "cls_token": "<s>", "mask_token": {"content": "<mask>", "single_word": false, "lstrip": true, "rstrip": false, "normalized": false}}
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"errors": "replace", "bos_token": "<s>", "eos_token": "</s>", "sep_token": "</s>", "cls_token": "<s>", "unk_token": "<unk>", "pad_token": "<pad>", "mask_token": "<mask>", "add_prefix_space": false, "trim_offsets": true, "model_max_length": 16384, "special_tokens_map_file": null, "name_or_path": "tmp/pubmed/lsg_local_large_lr_16384_full_trained", "tokenizer_class": "BartTokenizer"}
vocab.json ADDED
The diff for this file is too large to render. See raw diff