bos_token + readme
Browse files- README.md +12 -7
- modeling_lsg_bart.py +38 -11
README.md
CHANGED
@@ -71,26 +71,31 @@ model = AutoModel.from_pretrained("ccdv/lsg-bart-large-4096",
|
|
71 |
|
72 |
## Sparse selection type
|
73 |
|
74 |
-
There are
|
|
|
75 |
Note that for sequences with length < 2*block_size, the type has no effect.
|
76 |
-
|
77 |
-
*
|
|
|
|
|
|
|
|
|
78 |
* Works best for a small sparsity_factor (2 to 4)
|
79 |
* Additional parameters:
|
80 |
* None
|
81 |
-
* sparsity_type="pooling"
|
82 |
* Works best for a small sparsity_factor (2 to 4)
|
83 |
* Additional parameters:
|
84 |
* None
|
85 |
-
* sparsity_type="lsh"
|
86 |
* Works best for a large sparsity_factor (4+)
|
87 |
* LSH relies on random projections, thus inference may differ slightly with different seeds
|
88 |
* Additional parameters:
|
89 |
* lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids
|
90 |
-
* sparsity_type="stride"
|
91 |
* Each head will use different tokens strided by sparsify_factor
|
92 |
* Not recommended if sparsify_factor > num_heads
|
93 |
-
* sparsity_type="block_stride"
|
94 |
* Each head will use block of tokens strided by sparsify_factor
|
95 |
* Not recommended if sparsify_factor > num_heads
|
96 |
|
|
|
71 |
|
72 |
## Sparse selection type
|
73 |
|
74 |
+
There are 6 different sparse selection patterns. The best type is task dependent. \
|
75 |
+
If `sparse_block_size=0` or `sparsity_type="none"`, only local attention is considered. \
|
76 |
Note that for sequences with length < 2*block_size, the type has no effect.
|
77 |
+
* `sparsity_type="bos_pooling"` (new)
|
78 |
+
* weighted average pooling using the BOS token
|
79 |
+
* Works best in general, especially with a rather large sparsity_factor (8, 16, 32)
|
80 |
+
* Additional parameters:
|
81 |
+
* None
|
82 |
+
* `sparsity_type="norm"`, select highest norm tokens
|
83 |
* Works best for a small sparsity_factor (2 to 4)
|
84 |
* Additional parameters:
|
85 |
* None
|
86 |
+
* `sparsity_type="pooling"`, use average pooling to merge tokens
|
87 |
* Works best for a small sparsity_factor (2 to 4)
|
88 |
* Additional parameters:
|
89 |
* None
|
90 |
+
* `sparsity_type="lsh"`, use the LSH algorithm to cluster similar tokens
|
91 |
* Works best for a large sparsity_factor (4+)
|
92 |
* LSH relies on random projections, thus inference may differ slightly with different seeds
|
93 |
* Additional parameters:
|
94 |
* lsg_num_pre_rounds=1, pre merge tokens n times before computing centroids
|
95 |
+
* `sparsity_type="stride"`, use a striding mecanism per head
|
96 |
* Each head will use different tokens strided by sparsify_factor
|
97 |
* Not recommended if sparsify_factor > num_heads
|
98 |
+
* `sparsity_type="block_stride"`, use a striding mecanism per head
|
99 |
* Each head will use block of tokens strided by sparsify_factor
|
100 |
* Not recommended if sparsify_factor > num_heads
|
101 |
|
modeling_lsg_bart.py
CHANGED
@@ -55,9 +55,9 @@ class LSGBartConfig(BartConfig):
|
|
55 |
self.sparsity_factor = sparsity_factor
|
56 |
self.sparsity_type = sparsity_type
|
57 |
|
58 |
-
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride"]:
|
59 |
logger.warning(
|
60 |
-
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride'], \
|
61 |
setting sparsity_type=None, computation will skip sparse attention")
|
62 |
self.sparsity_type = None
|
63 |
|
@@ -345,7 +345,7 @@ class LSGAttentionProduct(nn.Module):
|
|
345 |
return x.reshape(*x.size()[:-2], n_blocks, -1, d)
|
346 |
|
347 |
|
348 |
-
class
|
349 |
'''
|
350 |
Compute local attention with overlapping blocs
|
351 |
Use global attention for tokens with highest norm
|
@@ -380,15 +380,16 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
380 |
"lsh": self.get_sparse_tokens_with_lsh,
|
381 |
"stride": self.get_sparse_tokens_with_stride,
|
382 |
"block_stride": self.get_sparse_tokens_with_block_stride,
|
|
|
383 |
}
|
384 |
|
385 |
self.sparsity_type = config.sparsity_type
|
386 |
-
self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda x, y, z: (None, None, None))
|
387 |
|
388 |
if config.sparsity_type == "lsh":
|
389 |
self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
|
390 |
|
391 |
-
def get_sparse_tokens_with_norm(self, keys, values, mask):
|
392 |
|
393 |
if self.sparsity_factor == 1:
|
394 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
@@ -416,7 +417,7 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
416 |
|
417 |
return keys, values, mask
|
418 |
|
419 |
-
def get_sparse_tokens_with_pooling(self, keys, values, mask):
|
420 |
|
421 |
if self.sparsity_factor == 1:
|
422 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
@@ -439,7 +440,7 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
439 |
mask *= torch.finfo(mask.dtype).min
|
440 |
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
|
441 |
|
442 |
-
def get_sparse_tokens_with_stride(self, keys, values, mask):
|
443 |
|
444 |
if self.sparsity_factor == 1:
|
445 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
@@ -455,7 +456,7 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
455 |
|
456 |
return keys, values, mask
|
457 |
|
458 |
-
def get_sparse_tokens_with_block_stride(self, keys, values, mask):
|
459 |
|
460 |
if self.sparsity_factor == 1:
|
461 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
@@ -475,11 +476,14 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
475 |
|
476 |
return keys, values, mask
|
477 |
|
478 |
-
def get_sparse_tokens_with_lsh(self, keys, values, mask):
|
479 |
|
480 |
if self.sparsity_factor == 1:
|
481 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
482 |
|
|
|
|
|
|
|
483 |
block_size = min(self.block_size, self.sparse_block_size)
|
484 |
keys = self.chunk(keys, block_size)
|
485 |
values = self.chunk(values, block_size)
|
@@ -526,6 +530,29 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
526 |
|
527 |
return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
|
528 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
529 |
def forward(
|
530 |
self,
|
531 |
hidden_states,
|
@@ -595,7 +622,7 @@ class LSGBartEncoderAttention(BaseSelfAttention):
|
|
595 |
sparse_key, sparse_value, sparse_mask = (None, None, None)
|
596 |
|
597 |
if self.sparse_block_size and self.sparsity_factor > 0:
|
598 |
-
sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(key_layer, value_layer, attention_mask)
|
599 |
|
600 |
# Expand masks on heads
|
601 |
attention_mask = attention_mask.expand(-1, h, -1, -1)
|
@@ -632,7 +659,7 @@ class LSGBartEncoderLayer(BartEncoderLayer):
|
|
632 |
def __init__(self, config):
|
633 |
|
634 |
super().__init__(config)
|
635 |
-
self.self_attn =
|
636 |
config=config,
|
637 |
embed_dim=self.embed_dim,
|
638 |
num_heads=config.encoder_attention_heads,
|
|
|
55 |
self.sparsity_factor = sparsity_factor
|
56 |
self.sparsity_type = sparsity_type
|
57 |
|
58 |
+
if sparsity_type not in [None, "none", "norm", "lsh", "pooling", "stride", "block_stride", "bos_pooling"]:
|
59 |
logger.warning(
|
60 |
+
"[WARNING CONFIG]: sparsity_mode not in [None, 'none', 'norm', 'lsh', 'pooling', 'stride', 'block_stride', 'bos_pooling'], \
|
61 |
setting sparsity_type=None, computation will skip sparse attention")
|
62 |
self.sparsity_type = None
|
63 |
|
|
|
345 |
return x.reshape(*x.size()[:-2], n_blocks, -1, d)
|
346 |
|
347 |
|
348 |
+
class LSGBartEncoderSelfAttention(BaseSelfAttention):
|
349 |
'''
|
350 |
Compute local attention with overlapping blocs
|
351 |
Use global attention for tokens with highest norm
|
|
|
380 |
"lsh": self.get_sparse_tokens_with_lsh,
|
381 |
"stride": self.get_sparse_tokens_with_stride,
|
382 |
"block_stride": self.get_sparse_tokens_with_block_stride,
|
383 |
+
"bos_pooling": self.get_sparse_tokens_with_bos_pooling
|
384 |
}
|
385 |
|
386 |
self.sparsity_type = config.sparsity_type
|
387 |
+
self.get_sparse_elements = sparse_functions.get(self.sparsity_type, lambda w, x, y, z: (None, None, None))
|
388 |
|
389 |
if config.sparsity_type == "lsh":
|
390 |
self.lsh_num_pre_rounds = config.lsh_num_pre_rounds
|
391 |
|
392 |
+
def get_sparse_tokens_with_norm(self, queries, keys, values, mask):
|
393 |
|
394 |
if self.sparsity_factor == 1:
|
395 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
|
|
417 |
|
418 |
return keys, values, mask
|
419 |
|
420 |
+
def get_sparse_tokens_with_pooling(self, queries, keys, values, mask):
|
421 |
|
422 |
if self.sparsity_factor == 1:
|
423 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
|
|
440 |
mask *= torch.finfo(mask.dtype).min
|
441 |
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
|
442 |
|
443 |
+
def get_sparse_tokens_with_stride(self, queries, keys, values, mask):
|
444 |
|
445 |
if self.sparsity_factor == 1:
|
446 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
|
|
456 |
|
457 |
return keys, values, mask
|
458 |
|
459 |
+
def get_sparse_tokens_with_block_stride(self, queries, keys, values, mask):
|
460 |
|
461 |
if self.sparsity_factor == 1:
|
462 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
|
|
476 |
|
477 |
return keys, values, mask
|
478 |
|
479 |
+
def get_sparse_tokens_with_lsh(self, queries, keys, values, mask):
|
480 |
|
481 |
if self.sparsity_factor == 1:
|
482 |
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
483 |
|
484 |
+
if self.sparsity_factor == self.sparse_block_size:
|
485 |
+
return self.get_sparse_tokens_with_bos_pooling(queries, keys, values, mask)
|
486 |
+
|
487 |
block_size = min(self.block_size, self.sparse_block_size)
|
488 |
keys = self.chunk(keys, block_size)
|
489 |
values = self.chunk(values, block_size)
|
|
|
530 |
|
531 |
return keys[..., :output_size, :], values[..., :output_size, :], mask[..., :output_size, :]
|
532 |
|
533 |
+
def get_sparse_tokens_with_bos_pooling(self, queries, keys, values, mask):
|
534 |
+
|
535 |
+
if self.sparsity_factor == 1:
|
536 |
+
return keys, values, mask.expand(-1, keys.size()[1], -1, -1)
|
537 |
+
|
538 |
+
queries = queries.unsqueeze(-3)
|
539 |
+
mask = self.chunk(mask.transpose(-1, -2), self.sparsity_factor).transpose(-1, -2)
|
540 |
+
keys = self.chunk(keys, self.sparsity_factor)
|
541 |
+
values = self.chunk(values, self.sparsity_factor)
|
542 |
+
|
543 |
+
n, h, b, t, d = keys.size()
|
544 |
+
scores = (queries[..., :1, :] @ keys.transpose(-1, -2)) / math.sqrt(d)
|
545 |
+
if mask is not None:
|
546 |
+
scores = scores + mask
|
547 |
+
|
548 |
+
scores = torch.softmax(scores, dim=-1)
|
549 |
+
keys = scores @ keys
|
550 |
+
values = scores @ values
|
551 |
+
mask = mask.mean(dim=-1)
|
552 |
+
mask[mask != torch.finfo(mask.dtype).min] = 0
|
553 |
+
|
554 |
+
return keys.reshape(n, h, -1, d), values.reshape(n, h, -1, d), mask.expand(-1, h, -1, -1).transpose(-1, -2)
|
555 |
+
|
556 |
def forward(
|
557 |
self,
|
558 |
hidden_states,
|
|
|
622 |
sparse_key, sparse_value, sparse_mask = (None, None, None)
|
623 |
|
624 |
if self.sparse_block_size and self.sparsity_factor > 0:
|
625 |
+
sparse_key, sparse_value, sparse_mask = self.get_sparse_elements(query_layer, key_layer, value_layer, attention_mask)
|
626 |
|
627 |
# Expand masks on heads
|
628 |
attention_mask = attention_mask.expand(-1, h, -1, -1)
|
|
|
659 |
def __init__(self, config):
|
660 |
|
661 |
super().__init__(config)
|
662 |
+
self.self_attn = LSGBartEncoderSelfAttention(
|
663 |
config=config,
|
664 |
embed_dim=self.embed_dim,
|
665 |
num_heads=config.encoder_attention_heads,
|