ccore commited on
Commit
64a7bdf
·
1 Parent(s): 7c6404c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +139 -0
README.md CHANGED
@@ -1,3 +1,142 @@
1
  ---
2
  license: mit
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: mit
3
  ---
4
+
5
+
6
+ # Conversational Language Model Interface using FASTTEXT
7
+
8
+ This project provides a Command Line Interface (CLI) for interacting with a FastText language model, enabling users to generate text sequences based on their input. The script allows customization of parameters such as temperature, input text, top-k predictions, and model file path.
9
+
10
+ ## Installation
11
+
12
+ Before running the script, ensure you have Python installed on your system. Additionally, you'll need to install the FastText library:
13
+
14
+ ```bash
15
+ pip install fasttext
16
+ ```
17
+
18
+ ## Usage
19
+
20
+ To use the script, you should first obtain or train a FastText model. Place the model file (usually with a `.bin` extension) in a known directory.
21
+
22
+ The script can be executed with various command-line arguments to specify the behavior:
23
+ ```python
24
+ import argparse
25
+ import fasttext
26
+ import numpy as np
27
+
28
+ def apply_repetition_penalty(labels, probabilities, used_labels, penalty_scale=1.9):
29
+ """
30
+ Applies a repetition penalty to reduce the probability of already used labels.
31
+
32
+ :param labels: List of possible labels.
33
+ :param probabilities: Corresponding list of probabilities.
34
+ :param used_labels: Set of labels that have already been used.
35
+ :param penalty_scale: Scale of the penalty to be applied.
36
+ :return: Adjusted probabilities.
37
+ """
38
+ adjusted_probabilities = probabilities.copy()
39
+ for i, label in enumerate(labels):
40
+ if label in used_labels:
41
+ adjusted_probabilities[i] /= penalty_scale
42
+ # Normalize the probabilities to sum to 1 again
43
+ adjusted_probabilities /= adjusted_probabilities.sum()
44
+ return adjusted_probabilities
45
+
46
+ def predict_sequence(model, text, sequence_length=20, temperature=.5, penalty_scale=1.9):
47
+ """
48
+ Generates a sequence of labels using the FastText model with repetition penalty.
49
+
50
+ :param model: Loaded FastText model.
51
+ :param text: Initial text to start the prediction from.
52
+ :param sequence_length: Desired length of the sequence.
53
+ :param temperature: Temperature for sampling.
54
+ :param penalty_scale: Scale of repetition penalty.
55
+ :return: List of predicted labels.
56
+ """
57
+ used_labels = set()
58
+ sequence = []
59
+
60
+ for _ in range(sequence_length):
61
+ # Predict the top k most probable labels
62
+ labels, probabilities = model.predict(text, k=40)
63
+ labels = [label.replace('__label__', '') for label in labels]
64
+ probabilities = np.array(probabilities)
65
+
66
+ # Adjust the probabilities with repetition penalty
67
+ probabilities = apply_repetition_penalty(labels, probabilities, used_labels, penalty_scale)
68
+
69
+ # Sampling according to the adjusted probabilities
70
+ label_index = np.random.choice(range(len(labels)), p=probabilities)
71
+ chosen_label = labels[label_index]
72
+
73
+ # Add the chosen label to the sequence and to the set of used labels
74
+ sequence.append(chosen_label)
75
+ used_labels.add(chosen_label)
76
+
77
+ # Update the text with the chosen label for the next prediction
78
+ text += ' ' + chosen_label
79
+
80
+ return sequence
81
+
82
+ def generate_response(model, input_text, sequence_length=512, temperature=.5, penalty_scale=1.9):
83
+ generated_sequence = predict_sequence(model, input_text, sequence_length, temperature, penalty_scale)
84
+ return ' '.join(generated_sequence)
85
+
86
+ def main():
87
+ parser = argparse.ArgumentParser(description="Run the language model with specified parameters.")
88
+ parser.add_argument('-t', '--temperature', type=float, default=0.5, help='Temperature for sampling.')
89
+ parser.add_argument('-f', '--file', type=str, help='File containing input text.')
90
+ parser.add_argument('-p', '--text', type=str, help='Direct input text.')
91
+ parser.add_argument('-n', '--length', type=int, default=50, help='length predictions to consider.')
92
+ parser.add_argument('-m', '--model', type=str, required=True, help='Address of the FastText model file.')
93
+
94
+ args = parser.parse_args()
95
+
96
+ # Load the model
97
+ model = fasttext.load_model(args.model)
98
+
99
+ input_text = ''
100
+ if args.file:
101
+ with open(args.file, 'r') as file:
102
+ input_text = file.read()
103
+ elif args.text:
104
+ input_text = args.text
105
+ else:
106
+ print("No input text provided. Please use -f to specify a file or -p for direct text input.")
107
+ return
108
+
109
+ # Generate and print the response
110
+ response = generate_response(model, input_text + " [RESPONSE]", sequence_length=args.length, temperature=args.temperature)
111
+ print("\nResponse:")
112
+ print(response)
113
+
114
+ if __name__ == "__main__":
115
+ main()
116
+
117
+
118
+ ```
119
+
120
+ ```bash
121
+ python conversation_app.py -t TEMPERATURE -f FILE -p TEXT -k TOPK -m MODEL_PATH
122
+ ```
123
+
124
+ - `-t TEMPERATURE` or `--temperature TEMPERATURE`: Sets the temperature for predictions. A higher temperature results in more diverse results. Default is 0.5.
125
+ - `-f FILE` or `--file FILE`: Specifies a path to a file containing input text. The script will read this file and use its contents as input.
126
+ - `-p TEXT` or `--text TEXT`: Directly provide the input text as a string.
127
+ - `-n LENGTH` or `--length TOPK`: Determines the number of top predictions to consider for the model's output. Default is 50.
128
+ - `-m MODEL_PATH` or `--model MODEL_PATH`: The path to the FastText model file (required).
129
+
130
+ ### Example
131
+
132
+ ```bash
133
+ python conversation_app.py -t 0.7 -p "What is the future of AI?" -n 40 -m /path/to/model.bin
134
+ ```
135
+
136
+ This command sets the temperature to 0.7, uses the provided question as input, considers the top 40 predictions, and specifies the model file path.
137
+
138
+ ## Note
139
+
140
+ - The script's output depends on the quality and training of the FastText model used.
141
+ - Ensure the specified model file path and input file path (if used) are correct.
142
+