File size: 2,157 Bytes
65548bd 12c13f4 65548bd 12c13f4 35eba84 12c13f4 35eba84 12c13f4 35eba84 12c13f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: t5-base
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-destination-inference
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-destination-inference
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0973
- Rouge1: 96.588
- Rouge2: 0.0
- Rougel: 96.588
- Rougelsum: 96.5792
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 1.1906 | 1.0 | 5701 | 0.1466 | 94.1847 | 0.0 | 94.1672 | 94.1584 |
| 0.9407 | 2.0 | 11402 | 0.1228 | 94.632 | 0.0 | 94.6408 | 94.632 |
| 0.8533 | 3.0 | 17103 | 0.1106 | 95.4653 | 0.0 | 95.4653 | 95.4565 |
| 0.7889 | 4.0 | 22804 | 0.1017 | 95.8337 | 0.0 | 95.8249 | 95.8162 |
| 0.7394 | 5.0 | 28505 | 0.0990 | 96.2547 | 0.0 | 96.2591 | 96.2459 |
| 0.7014 | 6.0 | 34206 | 0.0986 | 96.3951 | 0.0 | 96.4038 | 96.3863 |
| 0.6737 | 7.0 | 39907 | 0.0966 | 96.4915 | 0.0 | 96.4872 | 96.474 |
| 0.6533 | 8.0 | 45608 | 0.0973 | 96.588 | 0.0 | 96.588 | 96.5792 |
### Framework versions
- Transformers 4.33.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.3
|