File size: 2,159 Bytes
65548bd 12c13f4 65548bd 12c13f4 db2dc54 12c13f4 db2dc54 12c13f4 35eba84 db2dc54 12c13f4 db2dc54 12c13f4 db2dc54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 |
---
license: apache-2.0
base_model: t5-base
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-base-destination-inference
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# t5-base-destination-inference
This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4240
- Rouge1: 29.0369
- Rouge2: 0.0
- Rougel: 29.0007
- Rougelsum: 28.9826
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5.6e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 8
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:------:|:-------:|:---------:|
| 2.1788 | 1.0 | 2762 | 1.6737 | 21.7686 | 0.0 | 21.7958 | 21.7596 |
| 1.7176 | 2.0 | 5524 | 1.5569 | 24.6017 | 0.0 | 24.6017 | 24.5474 |
| 1.556 | 3.0 | 8286 | 1.4978 | 26.05 | 0.0 | 26.05 | 26.0319 |
| 1.4456 | 4.0 | 11048 | 1.4613 | 26.937 | 0.0 | 26.937 | 26.8827 |
| 1.3661 | 5.0 | 13810 | 1.4351 | 28.2223 | 0.0 | 28.2223 | 28.2042 |
| 1.3045 | 6.0 | 16572 | 1.4196 | 27.9508 | 0.0 | 27.9146 | 27.8965 |
| 1.2519 | 7.0 | 19334 | 1.4211 | 28.8559 | 0.0 | 28.8378 | 28.8197 |
| 1.2262 | 8.0 | 22096 | 1.4240 | 29.0369 | 0.0 | 29.0007 | 28.9826 |
### Framework versions
- Transformers 4.34.0
- Pytorch 2.1.0+cu121
- Datasets 2.14.5
- Tokenizers 0.14.1
|