File size: 1,582 Bytes
c7ffe2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: mit
base_model: VietAI/vit5-base
tags:
- text2text-generation
- generated_from_trainer
metrics:
- rouge
model-index:
- name: ViT5_Vietnamese_Correction
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ViT5_Vietnamese_Correction
This model is a fine-tuned version of [VietAI/vit5-base](https://huggingface.co/VietAI/vit5-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0456
- Rouge1: 75.1415
- Rouge2: 72.5591
- Rougel: 74.7125
- Rougelsum: 74.7157
- Gen Len: 18.5922
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 0.101 | 1.0 | 7500 | 0.0456 | 75.1415 | 72.5591 | 74.7125 | 74.7157 | 18.5922 |
### Framework versions
- Transformers 4.41.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
|