File size: 2,036 Bytes
2b79151 02cb558 2b79151 02cb558 2b79151 02cb558 2b79151 2770b63 2b79151 2770b63 2b79151 2770b63 2b79151 2770b63 2b79151 2770b63 2b79151 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
---
license: gemma
library_name: peft
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
base_model: google/gemma-7b
datasets:
- chansung/merged_ds_coding
model-index:
- name: coding_llamaduo_result3
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# coding_llamaduo_result3
This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the chansung/merged_ds_coding dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7502
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.987 | 1.0 | 82 | 1.2808 |
| 0.6859 | 2.0 | 164 | 1.1719 |
| 0.5836 | 3.0 | 246 | 1.1480 |
| 0.5178 | 4.0 | 328 | 1.1717 |
| 0.4668 | 5.0 | 410 | 1.2044 |
| 0.3955 | 6.0 | 492 | 1.3252 |
| 0.3233 | 7.0 | 574 | 1.4225 |
| 0.2669 | 8.0 | 656 | 1.6119 |
| 0.2591 | 9.0 | 738 | 1.7353 |
| 0.2367 | 10.0 | 820 | 1.7502 |
### Framework versions
- PEFT 0.7.1
- Transformers 4.40.0
- Pytorch 2.2.2+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1 |