--- library_name: transformers license: mit base_model: roberta-base tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: model results: [] --- # model This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.0309 - Precision: 0.2689 - Recall: 0.2544 - F1: 0.2615 - Accuracy: 0.8742 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1094 | 0.4292 | 100 | 1.8029 | 0.3026 | 0.1599 | 0.2092 | 0.8942 | | 0.1068 | 0.8584 | 200 | 1.7311 | 0.2883 | 0.2617 | 0.2744 | 0.8789 | | 0.059 | 1.2876 | 300 | 2.0629 | 0.3091 | 0.2212 | 0.2579 | 0.8886 | | 0.0713 | 1.7167 | 400 | 2.5245 | 0.3529 | 0.1308 | 0.1909 | 0.9029 | | 0.0634 | 2.1459 | 500 | 2.3395 | 0.3122 | 0.1786 | 0.2272 | 0.8937 | | 0.0572 | 2.5751 | 600 | 2.2058 | 0.2864 | 0.2347 | 0.2580 | 0.8819 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0