Commit
·
8f682fc
1
Parent(s):
1a28b99
Actor Critic model for AntBulletEnv-v0 environment
Browse files- README.md +1 -1
- a2c-AntBulletEnv-v0.zip +2 -2
- a2c-AntBulletEnv-v0/data +24 -24
- a2c-AntBulletEnv-v0/policy.optimizer.pth +2 -2
- a2c-AntBulletEnv-v0/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: AntBulletEnv-v0
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: 1086.62 +/- 68.33
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-AntBulletEnv-v0.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c194f2ecf63e7110935b9356a8afdf394539b78699aed861b1623e3f266b023
|
3 |
+
size 188982
|
a2c-AntBulletEnv-v0/data
CHANGED
@@ -4,28 +4,28 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'omegaconf.dictconfig.DictConfig'>",
|
25 |
-
":serialized:": "
|
26 |
"_metadata": "ContainerMetadata(ref_type=typing.Any, object_type=<class 'dict'>, optional=True, key=None, flags={'allow_objects': True}, flags_root=False, resolver_cache=defaultdict(<class 'dict'>, {}), key_type=typing.Any, element_type=typing.Any)",
|
27 |
"_parent": null,
|
28 |
-
"_content": "{'log_std_init': -2, 'ortho_init': False
|
29 |
"_flags_cache": {
|
30 |
"struct": null
|
31 |
}
|
@@ -57,17 +57,17 @@
|
|
57 |
"_np_random": null
|
58 |
},
|
59 |
"n_envs": 1,
|
60 |
-
"num_timesteps":
|
61 |
-
"_total_timesteps":
|
62 |
"_num_timesteps_at_start": 0,
|
63 |
"seed": null,
|
64 |
"action_noise": null,
|
65 |
-
"start_time":
|
66 |
-
"learning_rate": 0.
|
67 |
"tensorboard_log": null,
|
68 |
"lr_schedule": {
|
69 |
":type:": "<class 'function'>",
|
70 |
-
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/
|
71 |
},
|
72 |
"_last_obs": null,
|
73 |
"_last_episode_starts": {
|
@@ -76,7 +76,7 @@
|
|
76 |
},
|
77 |
"_last_original_obs": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
79 |
-
":serialized:": "
|
80 |
},
|
81 |
"_episode_num": 0,
|
82 |
"use_sde": true,
|
@@ -84,14 +84,14 @@
|
|
84 |
"_current_progress_remaining": 0.0,
|
85 |
"ep_info_buffer": {
|
86 |
":type:": "<class 'collections.deque'>",
|
87 |
-
":serialized:": "
|
88 |
},
|
89 |
"ep_success_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
92 |
},
|
93 |
-
"_n_updates":
|
94 |
-
"n_steps":
|
95 |
"gamma": 0.99,
|
96 |
"gae_lambda": 0.9,
|
97 |
"ent_coef": 0.0,
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9da033670>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9da033700>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9da033790>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9da033820>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe9da0338b0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe9da033940>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe9da0339d0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9da033a60>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe9da033af0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9da033b80>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9da033c10>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9da033ca0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fe9da02f7e0>"
|
21 |
},
|
22 |
"verbose": 1,
|
23 |
"policy_kwargs": {
|
24 |
":type:": "<class 'omegaconf.dictconfig.DictConfig'>",
|
25 |
+
":serialized:": "gAWVGAIAAAAAAACMFG9tZWdhY29uZi5kaWN0Y29uZmlnlIwKRGljdENvbmZpZ5STlCmBlH2UKIwJX21ldGFkYXRhlIwOb21lZ2Fjb25mLmJhc2WUjBFDb250YWluZXJNZXRhZGF0YZSTlCmBlH2UKIwIcmVmX3R5cGWUjAZ0eXBpbmeUjANBbnmUk5SMC29iamVjdF90eXBllIwIYnVpbHRpbnOUjARkaWN0lJOUjAhvcHRpb25hbJSIjANrZXmUTowFZmxhZ3OUfZSMDWFsbG93X29iamVjdHOUiHOMCmZsYWdzX3Jvb3SUiYwOcmVzb2x2ZXJfY2FjaGWUjAtjb2xsZWN0aW9uc5SMC2RlZmF1bHRkaWN0lJOUaBKFlFKUjAhrZXlfdHlwZZRoDowMZWxlbWVudF90eXBllGgOdWKMB19wYXJlbnSUTowIX2NvbnRlbnSUfZQojAxsb2dfc3RkX2luaXSUjA9vbWVnYWNvbmYubm9kZXOUjAdBbnlOb2RllJOUKYGUfZQoaAVoBowITWV0YWRhdGGUk5QpgZR9lChoC2gOaA9OaBOIaBRoJGgVfZRoGIloGWgcaBKFlFKUdWJoIWgDjARfdmFslEr+////dWKMCm9ydGhvX2luaXSUaCcpgZR9lChoBWgrKYGUfZQoaAtoDmgPTmgTiGgUaDJoFX2UaBiJaBloHGgShZRSlHViaCFoA2gxiXVidXViLg==",
|
26 |
"_metadata": "ContainerMetadata(ref_type=typing.Any, object_type=<class 'dict'>, optional=True, key=None, flags={'allow_objects': True}, flags_root=False, resolver_cache=defaultdict(<class 'dict'>, {}), key_type=typing.Any, element_type=typing.Any)",
|
27 |
"_parent": null,
|
28 |
+
"_content": "{'log_std_init': -2, 'ortho_init': False}",
|
29 |
"_flags_cache": {
|
30 |
"struct": null
|
31 |
}
|
|
|
57 |
"_np_random": null
|
58 |
},
|
59 |
"n_envs": 1,
|
60 |
+
"num_timesteps": 5000000,
|
61 |
+
"_total_timesteps": 5000000,
|
62 |
"_num_timesteps_at_start": 0,
|
63 |
"seed": null,
|
64 |
"action_noise": null,
|
65 |
+
"start_time": 1674147343664964307,
|
66 |
+
"learning_rate": 0.0001,
|
67 |
"tensorboard_log": null,
|
68 |
"lr_schedule": {
|
69 |
":type:": "<class 'function'>",
|
70 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
71 |
},
|
72 |
"_last_obs": null,
|
73 |
"_last_episode_starts": {
|
|
|
76 |
},
|
77 |
"_last_original_obs": {
|
78 |
":type:": "<class 'numpy.ndarray'>",
|
79 |
+
":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAADwHGY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA49bIPQAAAABcROi/AAAAAL7xXTwAAAAAoH7pPwAAAABsNwQ+AAAAAPIZ9j8AAAAA+V7ivQAAAAD8J+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0BWlNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA+W0b0AAAAArR/nvwAAAACv10e6AAAAAAGg6D8AAAAAsHzFvAAAAAAwztw/AAAAAA/1Db4AAAAALsbovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHClJjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAViPC8AAAAAELr478AAAAAqnThvQAAAAD9Aec/AAAAAG052z0AAAAAbwLqPwAAAAC02zq6AAAAAPCT/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRvdU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAulLHvQAAAAC39uS/AAAAAJjDHz0AAAAAQBbePwAAAAB4/ls9AAAAANNj3D8AAAAAOb7xPQAAAAA1htq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1U2VtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBYBmTwAAAAABGP8vwAAAADBppK9AAAAAGow+z8AAAAAJd/NPQAAAACyseI/AAAAAO9tqDwAAAAAUkv9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUqjTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHsQA+AAAAAK5F3r8AAAAAFM7mPQAAAABMQeU/AAAAACKvtT0AAAAAshTjPwAAAAAyL8+9AAAAAADQ4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7CoK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG0MaOwAAAACsLuW/AAAAACnpPr0AAAAAE1zmPwAAAAC2Oge+AAAAAIJ09T8AAAAAQ/SevAAAAACmY+y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb1mxtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBMpmD0AAAAA7wbkvwAAAAAruAi+AAAAAAuG4D8AAAAAhb/yvQAAAAD4o/I/AAAAALp5yL0AAAAAYxvyvwAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="
|
80 |
},
|
81 |
"_episode_num": 0,
|
82 |
"use_sde": true,
|
|
|
84 |
"_current_progress_remaining": 0.0,
|
85 |
"ep_info_buffer": {
|
86 |
":type:": "<class 'collections.deque'>",
|
87 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ15yZG8VYaMAWyUTegDjAF0lEdAqzSJlg+hXnV9lChoBkdAncvrdadMCmgHTegDaAhHQKs1djiGWUt1fZQoaAZHQJlok4aP0ZpoB03oA2gIR0CrNkoHkcS5dX2UKGgGR0CcXBCzTnaGaAdN6ANoCEdAqzcDsa86FXV9lChoBkdAm4p/ZRKpUGgHTegDaAhHQKs743zcynF1fZQoaAZHQJrd3KoybhFoB03oA2gIR0CrPB5KnNxEdX2UKGgGR0Cb1+UvPC2uaAdN6ANoCEdAqzxc1Q66rnV9lChoBkdAl7EJK8L8aWgHTegDaAhHQKs+Jz+WGAV1fZQoaAZHQJeypTtLL6loB03oA2gIR0CrP8YLb5/LdX2UKGgGR0CbMEtsenyeaAdN6ANoCEdAq0CxcophF3V9lChoBkdAngCQpz90imgHTegDaAhHQKtBhVjI7vJ1fZQoaAZHQJ0rHp8neBRoB03oA2gIR0CrQj1yWAwxdX2UKGgGR0CcDQyiEg4faAdN6ANoCEdAq0cX3rUsnXV9lChoBkdAnByoXXRPXWgHTegDaAhHQKtHUfwqiGp1fZQoaAZHQJ3THSE12q1oB03oA2gIR0CrR5FjNIK/dX2UKGgGR0CfNQipNsWPaAdN6ANoCEdAq0lYEIPbwnV9lChoBkdAn5nXAVO9FmgHTegDaAhHQKtK+PbO/tZ1fZQoaAZHQJ2cKPDHfdhoB03oA2gIR0CrS+WZJCjUdX2UKGgGR0Cd4hjQRf4RaAdN6ANoCEdAq0y6WRigCnV9lChoBkdAmOvVrdnCf2gHTegDaAhHQKtNdER8MNN1fZQoaAZHQJssclsxfv5oB03oA2gIR0CrUk+LvTgEdX2UKGgGR0CbUWkYGdI5aAdN6ANoCEdAq1KKQ9zOo3V9lChoBkdAnAOzER8MNWgHTegDaAhHQKtSyTIvJzV1fZQoaAZHQJ0uVZZB9kVoB03oA2gIR0CrVJHKfWc0dX2UKGgGR0CZ814/NZ/1aAdN6ANoCEdAq1YwWi1zAHV9lChoBkdAm2tpP2wmmmgHTegDaAhHQKtXHEJjUd91fZQoaAZHQJvo8EJSiudoB03oA2gIR0CrV++4LCvYdX2UKGgGR0CYzTY6GQCCaAdN6ANoCEdAq1ip7TlT33V9lChoBkdAmpuhubZvk2gHTegDaAhHQKtdiXGff411fZQoaAZHQJrZSPJaJRBoB03oA2gIR0CrXcNRFZxJdX2UKGgGR0CY+MLLpzLfaAdN6ANoCEdAq14DCk43m3V9lChoBkdAnGMot6HCXWgHTegDaAhHQKtfyeV9nbt1fZQoaAZHQJ+9sp6QeV9oB03oA2gIR0CrYWl1KXfJdX2UKGgGR0CgQXeSr5qNaAdN6ANoCEdAq2JUguAZsXV9lChoBkdAm93KO1fE42gHTegDaAhHQKtjJot+TeR1fZQoaAZHQJsGb4etCAtoB03oA2gIR0CrY+AWzniedX2UKGgGR0CbN+czImw8aAdN6ANoCEdAq2i8fxMFlnV9lChoBkdAmudD+irT6WgHTegDaAhHQKto9q46Oo51fZQoaAZHQJzcOaDwpfBoB03oA2gIR0CraTZMURFrdX2UKGgGR0CdaS9ytFKDaAdN6ANoCEdAq2sBEF4cFXV9lChoBkdAn1oV4HHFP2gHTegDaAhHQKtsn3YcvM91fZQoaAZHQJwSjFirksBoB03oA2gIR0CrbYoYvWYndX2UKGgGR0CdmXqsU7CBaAdN6ANoCEdAq25ck8ifQXV9lChoBkdAm1vGGh24eGgHTegDaAhHQKtvFXf642F1fZQoaAZHQJ14pSl3yI5oB03oA2gIR0Crc/XEqDsddX2UKGgGR0CaSB889wFUaAdN6ANoCEdAq3QvduYQa3V9lChoBkdAnBPAG0NSZWgHTegDaAhHQKt0bmLcbit1fZQoaAZHQJqD3w9aEBdoB03VA2gIR0CrdgGzSkTIdX2UKGgGR0CffO1+AmReaAdN6ANoCEdAq3fVv60pmXV9lChoBkdAm/ShaX8fm2gHTegDaAhHQKt4wZ0CA+Z1fZQoaAZHQJtijkq+ajNoB03oA2gIR0CreZR51Ng0dX2UKGgGR0CaqMVOKwY+aAdN6ANoCEdAq3pNwvQF93V9lChoBkdAnOGN5t3wC2gHTegDaAhHQKt/JTQ3PzF1fZQoaAZHQJ95vCoCMgloB03oA2gIR0Crf16URnOCdX2UKGgGR0CaNkszEaVEaAdN6ANoCEdAq3+ePgeijHV9lChoBkdAl76C79Q40mgHTegDaAhHQKuBLxhDw6R1fZQoaAZHQJs2eTnq3VloB03oA2gIR0CrgwcNx2jgdX2UKGgGR0CYqNEdvKlpaAdN6ANoCEdAq4Pyneizs3V9lChoBkdAmzmlQVKwp2gHTegDaAhHQKuEwv3ai9J1fZQoaAZHQJ49DdvbXYloB03oA2gIR0CrhXv+XJHRdX2UKGgGR0CaslDmr8ziaAdN6ANoCEdAq4pXykKu0XV9lChoBkdAnRdRy8zyjGgHTegDaAhHQKuKkXdj5Kx1fZQoaAZHQJsn+zu4PPNoB03oA2gIR0CritE2xY7rdX2UKGgGR0CcajdKujh2aAdN6ANoCEdAq4xhKWcBl3V9lChoBkdAnwX+enQ6ZGgHTegDaAhHQKuONdKNAC51fZQoaAZHQJ5Eq48U21loB03oA2gIR0CrjyHnEETydX2UKGgGR0CYstK1G9YfaAdN6ANoCEdAq4/096kZaXV9lChoBkdAnJSMKXv6TGgHTegDaAhHQKuQriXIEKV1fZQoaAZHQJ0JhdjXnQpoB03oA2gIR0CrlYv/R3NcdX2UKGgGR0CcrwBcAzYVaAdN6ANoCEdAq5XFWluWKXV9lChoBkdAnVWdcB2fTWgHTegDaAhHQKuWBSofjjt1fZQoaAZHQJyUIjmjj71oB03oA2gIR0Crl5dbor4GdX2UKGgGR0Ceq/lFc6eYaAdN6ANoCEdAq5ls3dbgTHV9lChoBkdAnmiC1qnFYWgHTegDaAhHQKuaWFmnO0N1fZQoaAZHQJ2WLymQ8wJoB03oA2gIR0CrmyqFAVwhdX2UKGgGR0CbtXt1p0wKaAdN6ANoCEdAq5vibx3FDXV9lChoBkdAnOKYT0xubmgHTegDaAhHQKugwt1ZDAt1fZQoaAZHQJyZ0PjGT9toB03oA2gIR0CroP2xIJ7cdX2UKGgGR0CbWT9/z8P4aAdN6ANoCEdAq6E8vGp++nV9lChoBkdAlVvxrWRRuWgHTegDaAhHQKuiz1h9b5d1fZQoaAZHQJHe4wnH/95oB03oA2gIR0CrpKkadc0MdX2UKGgGR0CcPdALy+YdaAdN6ANoCEdAq6WWNJe3QXV9lChoBkdAmmnc1O0sv2gHTegDaAhHQKumaGi5/b11fZQoaAZHQJjWwcdYGMZoB03oA2gIR0CrpyKXF98adX2UKGgGR0CfIHgzguRLaAdN6ANoCEdAq6wKSzPa+XV9lChoBkdAmuWVrl/6PGgHTegDaAhHQKusRYV6/qR1fZQoaAZHQJUfpLZi/fxoB03oA2gIR0CrrIXQ+lj3dX2UKGgGR0CPNa8rZrYXaAdN6ANoCEdAq64Y4Ia99XV9lChoBkdAmm0Dt9hJAmgHTegDaAhHQKuv7aFmFrV1fZQoaAZHQI5xqj59E1FoB03oA2gIR0CrsNkjPfKqdX2UKGgGR0CdVehuwX67aAdN6ANoCEdAq7Gq6lLvkXV9lChoBkdAmlR2qkuYhWgHTegDaAhHQKuyY4//vOR1fZQoaAZHQJwx9z2exwBoB03oA2gIR0CrtzwlruYydX2UKGgGR0CdwEZ0CA+ZaAdN6ANoCEdAq7d2TmnwX3V9lChoBkdAm/2asZHd42gHTegDaAhHQKu3tZmI0qJ1fZQoaAZHQJ3keOYIBzVoB03oA2gIR0CruUXYtg8bdX2UKGgGR0CcpTFCswL3aAdN6ANoCEdAq7sdhE0BO3V9lChoBkdAmyr9hNM4+GgHTegDaAhHQKu8Co/A0sR1fZQoaAZHQJw0NhrnDBNoB03oA2gIR0CrvN6MJhOQdX2UKGgGR0CLMI8SPEKmaAdN6ANoCEdAq72ZJbt7bHVlLg=="
|
88 |
},
|
89 |
"ep_success_buffer": {
|
90 |
":type:": "<class 'collections.deque'>",
|
91 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
92 |
},
|
93 |
+
"_n_updates": 62500,
|
94 |
+
"n_steps": 10,
|
95 |
"gamma": 0.99,
|
96 |
"gae_lambda": 0.9,
|
97 |
"ent_coef": 0.0,
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:908d120d1f6bdae29238282137338c9d895dbc01e862c35baf0113e193ccca4d
|
3 |
+
size 115440
|
a2c-AntBulletEnv-v0/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 56958
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f95a5beb527e1dc96efedf153df71d147c3ee488b6ea58eeeaeaf9951dde17cc
|
3 |
size 56958
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f5cdd211670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f5cdd211700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f5cdd211790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f5cdd211820>", "_build": "<function ActorCriticPolicy._build at 0x7f5cdd2118b0>", "forward": "<function ActorCriticPolicy.forward at 0x7f5cdd211940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f5cdd2119d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f5cdd211a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7f5cdd211af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f5cdd211b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f5cdd211c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f5cdd211ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f5cdd20e840>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'omegaconf.dictconfig.DictConfig'>", ":serialized:": "gAWVxAMAAAAAAACMFG9tZWdhY29uZi5kaWN0Y29uZmlnlIwKRGljdENvbmZpZ5STlCmBlH2UKIwJX21ldGFkYXRhlIwOb21lZ2Fjb25mLmJhc2WUjBFDb250YWluZXJNZXRhZGF0YZSTlCmBlH2UKIwIcmVmX3R5cGWUjAZ0eXBpbmeUjANBbnmUk5SMC29iamVjdF90eXBllIwIYnVpbHRpbnOUjARkaWN0lJOUjAhvcHRpb25hbJSIjANrZXmUTowFZmxhZ3OUfZSMDWFsbG93X29iamVjdHOUiHOMCmZsYWdzX3Jvb3SUiYwOcmVzb2x2ZXJfY2FjaGWUjAtjb2xsZWN0aW9uc5SMC2RlZmF1bHRkaWN0lJOUaBKFlFKUjAhrZXlfdHlwZZRoDowMZWxlbWVudF90eXBllGgOdWKMB19wYXJlbnSUTowIX2NvbnRlbnSUfZQojAxsb2dfc3RkX2luaXSUjA9vbWVnYWNvbmYubm9kZXOUjAdBbnlOb2RllJOUKYGUfZQoaAVoBowITWV0YWRhdGGUk5QpgZR9lChoC2gOaA9OaBOIaBRoJGgVfZRoGIloGWgcaBKFlFKUdWJoIWgDjARfdmFslEr+////dWKMCm9ydGhvX2luaXSUaCcpgZR9lChoBWgrKYGUfZQoaAtoDmgPTmgTiGgUaDJoFX2UaBiJaBloHGgShZRSlHViaCFoA2gxiXVijA9vcHRpbWl6ZXJfY2xhc3OUaCcpgZR9lChoBWgrKYGUfZQoaAtoDmgPTmgTiGgUaDpoFX2UaBiJaBloHGgShZRSlHViaCFoA2gxjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlHVijBBvcHRpbWl6ZXJfa3dhcmdzlGgCKYGUfZQoaAVoCCmBlH2UKGgLaA5oD2gSaBOIaBRoRWgVfZRoGIloGWgcaBKFlFKUaB9oDmggaA51YmghaANoIn2UKIwFYWxwaGGUaCcpgZR9lChoBWgrKYGUfZQoaAtoDmgPTmgTiGgUaE5oFX2UaBiJaBloHGgShZRSlHViaCFoRmgxRz/vrhR64UeudWKMA2Vwc5RoJymBlH2UKGgFaCspgZR9lChoC2gOaA9OaBOIaBRoVmgVfZRoGIloGWgcaBKFlFKUdWJoIWhGaDFHPuT4tYjjaPF1YowMd2VpZ2h0X2RlY2F5lGgnKYGUfZQoaAVoKymBlH2UKGgLaA5oD05oE4hoFGheaBV9lGgYiWgZaBxoEoWUUpR1YmghaEZoMUsAdWJ1dWJ1dWIu", "_metadata": "ContainerMetadata(ref_type=typing.Any, object_type=<class 'dict'>, optional=True, key=None, flags={'allow_objects': True}, flags_root=False, resolver_cache=defaultdict(<class 'dict'>, {}), key_type=typing.Any, element_type=typing.Any)", "_parent": null, "_content": "{'log_std_init': -2, 'ortho_init': False, 'optimizer_class': <class 'torch.optim.rmsprop.RMSprop'>, 'optimizer_kwargs': {'alpha': 0.99, 'eps': 1e-05, 'weight_decay': 0}}", "_flags_cache": {"struct": null}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 3000000, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674078437982535119, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAABhOQm3AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAtxoDPgAAAADyQ/+/AAAAAMnRAb4AAAAAxo/9PwAAAAAiKgW+AAAAANGG3j8AAAAAU7DivAAAAAAbIdq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA2FnZtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIcmGj0AAAAAFK7bvwAAAACiG/y9AAAAAOZwAEAAAAAAqHR7vAAAAACG7N8/AAAAAIam2j0AAAAAvnDvvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG08BTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAIFMC9AAAAAC8M6L8AAAAA/8TzPAAAAAAyGu0/AAAAANHI2r0AAAAAdZb5PwAAAACZWJS9AAAAAB2N+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC8foY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAbnjLvQAAAAC95eO/AAAAACBxxj0AAAAApdT/PwAAAABIcIw9AAAAALZPAUAAAAAAjabAPQAAAAC9+ui/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAmmn+NQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgGumyj0AAAAAi2vwvwAAAADSgAw+AAAAAIiU+D8AAAAA2cQkvQAAAACcL9w/AAAAACG2nr0AAAAA7XL2vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAKWN1LYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAnzVQ9AAAAAGOy+b8AAAAA3IWwOwAAAADvO+k/AAAAAGY/yb0AAAAARBPvPwAAAADdAfY9AAAAALiJ+78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAODCu2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACARs+jPQAAAADsKO6/AAAAABkxKr0AAAAA2Rn7PwAAAABTkeu9AAAAAGQ75T8AAAAASUsKvgAAAACM0eS/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAoFCQtQAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgJZ4b70AAAAAj6zpvwAAAADZBF29AAAAAAn/+z8AAAAAAVN3vQAAAABKD9w/AAAAAIEXFbwAAAAAW7TvvwAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJwZ/bah6B2MAWyUTegDjAF0lEdAnvIFHnU2DXV9lChoBkdAmc37rkbPyGgHTegDaAhHQJ7zaaScLBt1fZQoaAZHQJuHKpCKJl9oB03oA2gIR0Ce9HsImgJ1dX2UKGgGR0CdaolenhsJaAdN6ANoCEdAnvdwvpQk5nV9lChoBkdAn6eX9vS+g2gHTegDaAhHQJ7/H59E1EV1fZQoaAZHQJYmyvECNjtoB03oA2gIR0CfATlA/s3RdX2UKGgGR0CfgOoCdSVGaAdN6ANoCEdAnwcADNhVl3V9lChoBkdAn41K7/XGwWgHTegDaAhHQJ8H1flZHNJ1fZQoaAZHQJ1umIxgy/NoB03oA2gIR0CfCHuyeI2wdX2UKGgGR0CdE+qHGjsVaAdN6ANoCEdAnwnf2wmmcnV9lChoBkdAnGQ0RFqi5GgHTegDaAhHQJ8K77Gecx11fZQoaAZHQJ7MFjpcHGFoB03oA2gIR0CfDeUH6dlNdX2UKGgGR0CeclDYh+vyaAdN6ANoCEdAnxWEtI0653V9lChoBkdAnd3KMR6F/WgHTegDaAhHQJ8XmEUTL4h1fZQoaAZHQJs4fs8gZCRoB03oA2gIR0CfHVlC1JDmdX2UKGgGR0CejZZeAuqWaAdN6ANoCEdAnx4wE2YOUnV9lChoBkdAmyunuAqd6WgHTegDaAhHQJ8e1q1w5vN1fZQoaAZHQJtB8TewcHZoB03oA2gIR0CfID69TP0JdX2UKGgGR0CfEFzPKMefaAdN6ANoCEdAnyFQDvE0i3V9lChoBkdAnP9ibH6uXGgHTegDaAhHQJ8kSzC1qnF1fZQoaAZHQJxAAox59mZoB03oA2gIR0CfK/OdGy5adX2UKGgGR0CdeLDKHO8kaAdN6ANoCEdAny4JBkZrHnV9lChoBkdAn0O/yXlbNmgHTegDaAhHQJ8zxxWDHwR1fZQoaAZHQJzb5rN4Z/FoB03oA2gIR0CfNJ0CRwIddX2UKGgGR0Cdo7uIRAbAaAdN6ANoCEdAnzVCaVlf7nV9lChoBkdAnKWH5nDiwWgHTegDaAhHQJ82pOwgTyt1fZQoaAZHQJ3666PKdQRoB03oA2gIR0CfN7X531SPdX2UKGgGR0CfAEURWcSXaAdN6ANoCEdAnzqq9wm3OXV9lChoBkdAm+0VDfFaS2gHTegDaAhHQJ9CUcIZ62R1fZQoaAZHQJ86IrVe8f5oB03oA2gIR0CfRGPPcBU8dX2UKGgGR0CdppnoPkJbaAdN6ANoCEdAn0og+2VmjHV9lChoBkdAn49uTRplBmgHTegDaAhHQJ9K9kCmuT11fZQoaAZHQJ9bCGHpKSRoB03oA2gIR0CfS5sqril0dX2UKGgGR0Cfemg0TDfnaAdN6ANoCEdAn0z/16E8JXV9lChoBkdAnp9zJ6po9WgHTegDaAhHQJ9OEvf0mMR1fZQoaAZHQJ99UfMfRu1oB03oA2gIR0CfUQp/gBLgdX2UKGgGR0CdyZ6NEPUbaAdN6ANoCEdAn1ioEW69TXV9lChoBkdAnmiswL3K0WgHTegDaAhHQJ9auwdKdx11fZQoaAZHQJup7n9vS+hoB03oA2gIR0CfYHLHdXT3dX2UKGgGR0Cd0EQiRnvlaAdN6ANoCEdAn2FHfqHGj3V9lChoBkdAniWTnied1GgHTegDaAhHQJ9h66J66at1fZQoaAZHQJ3UVar3j+9oB03oA2gIR0CfY1I8QqZudX2UKGgGR0Cd711b7j1gaAdN6ANoCEdAn2Ri6xxDLXV9lChoBkdAnK7hrFfiP2gHTegDaAhHQJ9nWdmQKa51fZQoaAZHQJqUblFMIu5oB03oA2gIR0Cfbv3wTdtVdX2UKGgGR0Cbbz8QZn+RaAdN6ANoCEdAn3EO8scyWXV9lChoBkdAm3sxzJZGKGgHTegDaAhHQJ92y/+Kjzt1fZQoaAZHQJjQiQdS2phoB03oA2gIR0Cfd6Pd2xIKdX2UKGgGR0CbJs2vB7/oaAdN6ANoCEdAn3hKLsKLKnV9lChoBkdAnDW/29L6DWgHTegDaAhHQJ95sREnb7F1fZQoaAZHQJt4CuKXOW1oB03oA2gIR0CfesNOuaF3dX2UKGgGR0CcoDR+BpYcaAdN6ANoCEdAn32/4mCyyHV9lChoBkdAhqYVDrqt5mgHTegDaAhHQJ+FakLx7Rh1fZQoaAZHQJmkzKvFFUhoB03oA2gIR0Cfh4MibDuSdX2UKGgGR0CVlmQgcLjQaAdN6ANoCEdAn41R9b5dnnV9lChoBkdAk63ljI7vHGgHTegDaAhHQJ+OKXrt3Oh1fZQoaAZHQJdu2mFajetoB03oA2gIR0CfjtEXcgyNdX2UKGgGR0CRZp3EQ5FPaAdN6ANoCEdAn5A69bor4HV9lChoBkdAmroq20AtF2gHTegDaAhHQJ+RTOMVDa51fZQoaAZHQJXdKjUNKAdoB03oA2gIR0CflEUVzp5edX2UKGgGR0CYRkf2bobGaAdN6ANoCEdAn5vqvV3EAHV9lChoBkdAnBGZuyeI22gHTegDaAhHQJ+eBPLxI8R1fZQoaAZHQJs7aZof0VdoB03oA2gIR0Cfo89roGILdX2UKGgGR0CWaCuqm0mdaAdN6ANoCEdAn6Sn80k4WHV9lChoBkdAlN4U/GEPD2gHTegDaAhHQJ+lTiT+vQp1fZQoaAZHQJ0JD2USqVBoB03oA2gIR0CfpraOPvKEdX2UKGgGR0CRzhLNOdoWaAdN6ANoCEdAn6fKakRBeHV9lChoBkdAnPGxN21Ul2gHTegDaAhHQJ+qxNvfj0d1fZQoaAZHQJd2AmXw9aFoB03oA2gIR0CfsoF3pwCKdX2UKGgGR0CXx/FB6a9caAdN6ANoCEdAn7Sb7fpD/nV9lChoBkdAhlVDzRQaaWgHTegDaAhHQJ+6cyzolld1fZQoaAZHQJGnk5zYEntoB03oA2gIR0Cfu0vNNahYdX2UKGgGR0CSBRZeRgZ1aAdN6ANoCEdAn7vzL4etCHV9lChoBkdAmGAOIqLCN2gHTegDaAhHQJ+9WYOUdJd1fZQoaAZHQJ4PBGc4HX5oB03oA2gIR0Cfvm2lVLi/dX2UKGgGR0CNlNnqVyFPaAdN6ANoCEdAn8Fs5sCT2XV9lChoBkdAk0GAR9PUKGgHTegDaAhHQJ/JE5p8F6l1fZQoaAZHQJzCtUuL741oB03oA2gIR0CfyyWoFV1fdX2UKGgGR0CfUSmnwXqJaAdN6ANoCEdAn9DjF+/gznV9lChoBkdAnKxZPZZjhGgHTegDaAhHQJ/RuHrQgLZ1fZQoaAZHQJGdgxVQyh1oB03oA2gIR0Cf0l4/NZ/1dX2UKGgGR0Cf5K9RJmNBaAdN6ANoCEdAn9PBRMvh63V9lChoBkdAme7KwMYuTWgHTegDaAhHQJ/U0LhJiAl1fZQoaAZHQJ5HvP1L8JloB03oA2gIR0Cf18QOFxn4dX2UKGgGR0CQM4EIPbwjaAdN6ANoCEdAn998Dr7fpHV9lChoBkdAnGvT06HTJGgHTegDaAhHQJ/hkRujynV1fZQoaAZHQJNUimR/3FloB03oA2gIR0Cf51I42jwhdX2UKGgGR0CYu8B4Uvf1aAdN6ANoCEdAn+goCEHt4XV9lChoBkdAnEzXSv1UVGgHTegDaAhHQJ/ozdtVJcx1fZQoaAZHQJm0/mZE2HdoB03oA2gIR0Cf6jONo8ISdX2UKGgGR0CeDN1pTMq0aAdN6ANoCEdAn+tEZNwiq3V9lChoBkdAnRVOpsGgSWgHTegDaAhHQJ/uPMdLg4x1fZQoaAZHQJzxKlCTlkpoB03oA2gIR0Cf9ej+717IdX2UKGgGR0CXigzxwyZbaAdN6ANoCEdAn/f+WnjyWnV9lChoBkdAngpsUdq+J2gHTegDaAhHQJ/9wkZ75VR1fZQoaAZHQHQcq8Yht+FoB00TAWgIR0Cf/isk6cRUdX2UKGgGR0Cchlf7rLQpaAdN6ANoCEdAn/6Zxeb/fnV9lChoBkdAnhUpgLJCB2gHTegDaAhHQJ//QBwMpgF1fZQoaAZHQJVGSz0HyEtoB03oA2gIR0CgAFSRr8BNdX2UKGgGR0CbsyAtWdVeaAdN6ANoCEdAoADeNR3u/nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 46875, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.85-1-MANJARO-x86_64-with-glibc2.29 # 1 SMP PREEMPT Wed Dec 21 21:15:06 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0a0+936e930", "GPU Enabled": "True", "Numpy": "1.22.2", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe9da033670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe9da033700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe9da033790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe9da033820>", "_build": "<function ActorCriticPolicy._build at 0x7fe9da0338b0>", "forward": "<function ActorCriticPolicy.forward at 0x7fe9da033940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fe9da0339d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe9da033a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe9da033af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe9da033b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe9da033c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe9da033ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe9da02f7e0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'omegaconf.dictconfig.DictConfig'>", ":serialized:": "gAWVGAIAAAAAAACMFG9tZWdhY29uZi5kaWN0Y29uZmlnlIwKRGljdENvbmZpZ5STlCmBlH2UKIwJX21ldGFkYXRhlIwOb21lZ2Fjb25mLmJhc2WUjBFDb250YWluZXJNZXRhZGF0YZSTlCmBlH2UKIwIcmVmX3R5cGWUjAZ0eXBpbmeUjANBbnmUk5SMC29iamVjdF90eXBllIwIYnVpbHRpbnOUjARkaWN0lJOUjAhvcHRpb25hbJSIjANrZXmUTowFZmxhZ3OUfZSMDWFsbG93X29iamVjdHOUiHOMCmZsYWdzX3Jvb3SUiYwOcmVzb2x2ZXJfY2FjaGWUjAtjb2xsZWN0aW9uc5SMC2RlZmF1bHRkaWN0lJOUaBKFlFKUjAhrZXlfdHlwZZRoDowMZWxlbWVudF90eXBllGgOdWKMB19wYXJlbnSUTowIX2NvbnRlbnSUfZQojAxsb2dfc3RkX2luaXSUjA9vbWVnYWNvbmYubm9kZXOUjAdBbnlOb2RllJOUKYGUfZQoaAVoBowITWV0YWRhdGGUk5QpgZR9lChoC2gOaA9OaBOIaBRoJGgVfZRoGIloGWgcaBKFlFKUdWJoIWgDjARfdmFslEr+////dWKMCm9ydGhvX2luaXSUaCcpgZR9lChoBWgrKYGUfZQoaAtoDmgPTmgTiGgUaDJoFX2UaBiJaBloHGgShZRSlHViaCFoA2gxiXVidXViLg==", "_metadata": "ContainerMetadata(ref_type=typing.Any, object_type=<class 'dict'>, optional=True, key=None, flags={'allow_objects': True}, flags_root=False, resolver_cache=defaultdict(<class 'dict'>, {}), key_type=typing.Any, element_type=typing.Any)", "_parent": null, "_content": "{'log_std_init': -2, 'ortho_init': False}", "_flags_cache": {"struct": null}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 1, "num_timesteps": 5000000, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1674147343664964307, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVewAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYIAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlC4="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QMAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAwAAAAAAAAAAAADwHGY2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACA49bIPQAAAABcROi/AAAAAL7xXTwAAAAAoH7pPwAAAABsNwQ+AAAAAPIZ9j8AAAAA+V7ivQAAAAD8J+G/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA0BWlNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA+W0b0AAAAArR/nvwAAAACv10e6AAAAAAGg6D8AAAAAsHzFvAAAAAAwztw/AAAAAA/1Db4AAAAALsbovwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAHClJjUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIAViPC8AAAAAELr478AAAAAqnThvQAAAAD9Aec/AAAAAG052z0AAAAAbwLqPwAAAAC02zq6AAAAAPCT/78AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACRvdU1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAulLHvQAAAAC39uS/AAAAAJjDHz0AAAAAQBbePwAAAAB4/ls9AAAAANNj3D8AAAAAOb7xPQAAAAA1htq/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA1U2VtAAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBYBmTwAAAAABGP8vwAAAADBppK9AAAAAGow+z8AAAAAJd/NPQAAAACyseI/AAAAAO9tqDwAAAAAUkv9vwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUqjTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDHsQA+AAAAAK5F3r8AAAAAFM7mPQAAAABMQeU/AAAAACKvtT0AAAAAshTjPwAAAAAyL8+9AAAAAADQ4r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAC7CoK2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAG0MaOwAAAACsLuW/AAAAACnpPr0AAAAAE1zmPwAAAAC2Oge+AAAAAIJ09T8AAAAAQ/SevAAAAACmY+y/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAb1mxtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgBMpmD0AAAAA7wbkvwAAAAAruAi+AAAAAAuG4D8AAAAAhb/yvQAAAAD4o/I/AAAAALp5yL0AAAAAYxvyvwAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksISxyGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ15yZG8VYaMAWyUTegDjAF0lEdAqzSJlg+hXnV9lChoBkdAncvrdadMCmgHTegDaAhHQKs1djiGWUt1fZQoaAZHQJlok4aP0ZpoB03oA2gIR0CrNkoHkcS5dX2UKGgGR0CcXBCzTnaGaAdN6ANoCEdAqzcDsa86FXV9lChoBkdAm4p/ZRKpUGgHTegDaAhHQKs743zcynF1fZQoaAZHQJrd3KoybhFoB03oA2gIR0CrPB5KnNxEdX2UKGgGR0Cb1+UvPC2uaAdN6ANoCEdAqzxc1Q66rnV9lChoBkdAl7EJK8L8aWgHTegDaAhHQKs+Jz+WGAV1fZQoaAZHQJeypTtLL6loB03oA2gIR0CrP8YLb5/LdX2UKGgGR0CbMEtsenyeaAdN6ANoCEdAq0CxcophF3V9lChoBkdAngCQpz90imgHTegDaAhHQKtBhVjI7vJ1fZQoaAZHQJ0rHp8neBRoB03oA2gIR0CrQj1yWAwxdX2UKGgGR0CcDQyiEg4faAdN6ANoCEdAq0cX3rUsnXV9lChoBkdAnByoXXRPXWgHTegDaAhHQKtHUfwqiGp1fZQoaAZHQJ3THSE12q1oB03oA2gIR0CrR5FjNIK/dX2UKGgGR0CfNQipNsWPaAdN6ANoCEdAq0lYEIPbwnV9lChoBkdAn5nXAVO9FmgHTegDaAhHQKtK+PbO/tZ1fZQoaAZHQJ2cKPDHfdhoB03oA2gIR0CrS+WZJCjUdX2UKGgGR0Cd4hjQRf4RaAdN6ANoCEdAq0y6WRigCnV9lChoBkdAmOvVrdnCf2gHTegDaAhHQKtNdER8MNN1fZQoaAZHQJssclsxfv5oB03oA2gIR0CrUk+LvTgEdX2UKGgGR0CbUWkYGdI5aAdN6ANoCEdAq1KKQ9zOo3V9lChoBkdAnAOzER8MNWgHTegDaAhHQKtSyTIvJzV1fZQoaAZHQJ0uVZZB9kVoB03oA2gIR0CrVJHKfWc0dX2UKGgGR0CZ814/NZ/1aAdN6ANoCEdAq1YwWi1zAHV9lChoBkdAm2tpP2wmmmgHTegDaAhHQKtXHEJjUd91fZQoaAZHQJvo8EJSiudoB03oA2gIR0CrV++4LCvYdX2UKGgGR0CYzTY6GQCCaAdN6ANoCEdAq1ip7TlT33V9lChoBkdAmpuhubZvk2gHTegDaAhHQKtdiXGff411fZQoaAZHQJrZSPJaJRBoB03oA2gIR0CrXcNRFZxJdX2UKGgGR0CY+MLLpzLfaAdN6ANoCEdAq14DCk43m3V9lChoBkdAnGMot6HCXWgHTegDaAhHQKtfyeV9nbt1fZQoaAZHQJ+9sp6QeV9oB03oA2gIR0CrYWl1KXfJdX2UKGgGR0CgQXeSr5qNaAdN6ANoCEdAq2JUguAZsXV9lChoBkdAm93KO1fE42gHTegDaAhHQKtjJot+TeR1fZQoaAZHQJsGb4etCAtoB03oA2gIR0CrY+AWzniedX2UKGgGR0CbN+czImw8aAdN6ANoCEdAq2i8fxMFlnV9lChoBkdAmudD+irT6WgHTegDaAhHQKto9q46Oo51fZQoaAZHQJzcOaDwpfBoB03oA2gIR0CraTZMURFrdX2UKGgGR0CdaS9ytFKDaAdN6ANoCEdAq2sBEF4cFXV9lChoBkdAn1oV4HHFP2gHTegDaAhHQKtsn3YcvM91fZQoaAZHQJwSjFirksBoB03oA2gIR0CrbYoYvWYndX2UKGgGR0CdmXqsU7CBaAdN6ANoCEdAq25ck8ifQXV9lChoBkdAm1vGGh24eGgHTegDaAhHQKtvFXf642F1fZQoaAZHQJ14pSl3yI5oB03oA2gIR0Crc/XEqDsddX2UKGgGR0CaSB889wFUaAdN6ANoCEdAq3QvduYQa3V9lChoBkdAnBPAG0NSZWgHTegDaAhHQKt0bmLcbit1fZQoaAZHQJqD3w9aEBdoB03VA2gIR0CrdgGzSkTIdX2UKGgGR0CffO1+AmReaAdN6ANoCEdAq3fVv60pmXV9lChoBkdAm/ShaX8fm2gHTegDaAhHQKt4wZ0CA+Z1fZQoaAZHQJtijkq+ajNoB03oA2gIR0CreZR51Ng0dX2UKGgGR0CaqMVOKwY+aAdN6ANoCEdAq3pNwvQF93V9lChoBkdAnOGN5t3wC2gHTegDaAhHQKt/JTQ3PzF1fZQoaAZHQJ95vCoCMgloB03oA2gIR0Crf16URnOCdX2UKGgGR0CaNkszEaVEaAdN6ANoCEdAq3+ePgeijHV9lChoBkdAl76C79Q40mgHTegDaAhHQKuBLxhDw6R1fZQoaAZHQJs2eTnq3VloB03oA2gIR0CrgwcNx2jgdX2UKGgGR0CYqNEdvKlpaAdN6ANoCEdAq4Pyneizs3V9lChoBkdAmzmlQVKwp2gHTegDaAhHQKuEwv3ai9J1fZQoaAZHQJ49DdvbXYloB03oA2gIR0CrhXv+XJHRdX2UKGgGR0CaslDmr8ziaAdN6ANoCEdAq4pXykKu0XV9lChoBkdAnRdRy8zyjGgHTegDaAhHQKuKkXdj5Kx1fZQoaAZHQJsn+zu4PPNoB03oA2gIR0CritE2xY7rdX2UKGgGR0CcajdKujh2aAdN6ANoCEdAq4xhKWcBl3V9lChoBkdAnwX+enQ6ZGgHTegDaAhHQKuONdKNAC51fZQoaAZHQJ5Eq48U21loB03oA2gIR0CrjyHnEETydX2UKGgGR0CYstK1G9YfaAdN6ANoCEdAq4/096kZaXV9lChoBkdAnJSMKXv6TGgHTegDaAhHQKuQriXIEKV1fZQoaAZHQJ0JhdjXnQpoB03oA2gIR0CrlYv/R3NcdX2UKGgGR0CcrwBcAzYVaAdN6ANoCEdAq5XFWluWKXV9lChoBkdAnVWdcB2fTWgHTegDaAhHQKuWBSofjjt1fZQoaAZHQJyUIjmjj71oB03oA2gIR0Crl5dbor4GdX2UKGgGR0Ceq/lFc6eYaAdN6ANoCEdAq5ls3dbgTHV9lChoBkdAnmiC1qnFYWgHTegDaAhHQKuaWFmnO0N1fZQoaAZHQJ2WLymQ8wJoB03oA2gIR0CrmyqFAVwhdX2UKGgGR0CbtXt1p0wKaAdN6ANoCEdAq5vibx3FDXV9lChoBkdAnOKYT0xubmgHTegDaAhHQKugwt1ZDAt1fZQoaAZHQJyZ0PjGT9toB03oA2gIR0CroP2xIJ7cdX2UKGgGR0CbWT9/z8P4aAdN6ANoCEdAq6E8vGp++nV9lChoBkdAlVvxrWRRuWgHTegDaAhHQKuiz1h9b5d1fZQoaAZHQJHe4wnH/95oB03oA2gIR0CrpKkadc0MdX2UKGgGR0CcPdALy+YdaAdN6ANoCEdAq6WWNJe3QXV9lChoBkdAmmnc1O0sv2gHTegDaAhHQKumaGi5/b11fZQoaAZHQJjWwcdYGMZoB03oA2gIR0CrpyKXF98adX2UKGgGR0CfIHgzguRLaAdN6ANoCEdAq6wKSzPa+XV9lChoBkdAmuWVrl/6PGgHTegDaAhHQKusRYV6/qR1fZQoaAZHQJUfpLZi/fxoB03oA2gIR0CrrIXQ+lj3dX2UKGgGR0CPNa8rZrYXaAdN6ANoCEdAq64Y4Ia99XV9lChoBkdAmm0Dt9hJAmgHTegDaAhHQKuv7aFmFrV1fZQoaAZHQI5xqj59E1FoB03oA2gIR0CrsNkjPfKqdX2UKGgGR0CdVehuwX67aAdN6ANoCEdAq7Gq6lLvkXV9lChoBkdAmlR2qkuYhWgHTegDaAhHQKuyY4//vOR1fZQoaAZHQJwx9z2exwBoB03oA2gIR0CrtzwlruYydX2UKGgGR0CdwEZ0CA+ZaAdN6ANoCEdAq7d2TmnwX3V9lChoBkdAm/2asZHd42gHTegDaAhHQKu3tZmI0qJ1fZQoaAZHQJ3keOYIBzVoB03oA2gIR0CruUXYtg8bdX2UKGgGR0CcpTFCswL3aAdN6ANoCEdAq7sdhE0BO3V9lChoBkdAmyr9hNM4+GgHTegDaAhHQKu8Co/A0sR1fZQoaAZHQJw0NhrnDBNoB03oA2gIR0CrvN6MJhOQdX2UKGgGR0CLMI8SPEKmaAdN6ANoCEdAq72ZJbt7bHVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 10, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.85-1-MANJARO-x86_64-with-glibc2.29 # 1 SMP PREEMPT Wed Dec 21 21:15:06 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0a0+936e930", "GPU Enabled": "True", "Numpy": "1.22.2", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 1086.6226002, "std_reward": 68.32818326822671, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-19T19:47:55.344607"}
|