Chenchen Liu
commited on
Commit
•
a74421a
1
Parent(s):
1f2c776
Initial commit
Browse files- .gitattributes +1 -0
- README.md +85 -0
- args.yml +83 -0
- config.yml +27 -0
- env_kwargs.yml +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- tqc-PandaSlide-v3.zip +3 -0
- tqc-PandaSlide-v3/_stable_baselines3_version +1 -0
- tqc-PandaSlide-v3/actor.optimizer.pth +3 -0
- tqc-PandaSlide-v3/critic.optimizer.pth +3 -0
- tqc-PandaSlide-v3/data +127 -0
- tqc-PandaSlide-v3/ent_coef_optimizer.pth +3 -0
- tqc-PandaSlide-v3/policy.pth +3 -0
- tqc-PandaSlide-v3/pytorch_variables.pth +3 -0
- tqc-PandaSlide-v3/system_info.txt +9 -0
- train_eval_metrics.zip +3 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- PandaSlide-v3
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: TQC
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: PandaSlide-v3
|
16 |
+
type: PandaSlide-v3
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -10.00 +/- 2.14
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **TQC** Agent playing **PandaSlide-v3**
|
25 |
+
This is a trained model of a **TQC** agent playing **PandaSlide-v3**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
|
27 |
+
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
|
28 |
+
|
29 |
+
The RL Zoo is a training framework for Stable Baselines3
|
30 |
+
reinforcement learning agents,
|
31 |
+
with hyperparameter optimization and pre-trained agents included.
|
32 |
+
|
33 |
+
## Usage (with SB3 RL Zoo)
|
34 |
+
|
35 |
+
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
|
36 |
+
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
|
37 |
+
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
|
38 |
+
|
39 |
+
Install the RL Zoo (with SB3 and SB3-Contrib):
|
40 |
+
```bash
|
41 |
+
pip install rl_zoo3
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
# Download model and save it into the logs/ folder
|
46 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env PandaSlide-v3 -orga chencliu -f logs/
|
47 |
+
python -m rl_zoo3.enjoy --algo tqc --env PandaSlide-v3 -f logs/
|
48 |
+
```
|
49 |
+
|
50 |
+
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
|
51 |
+
```
|
52 |
+
python -m rl_zoo3.load_from_hub --algo tqc --env PandaSlide-v3 -orga chencliu -f logs/
|
53 |
+
python -m rl_zoo3.enjoy --algo tqc --env PandaSlide-v3 -f logs/
|
54 |
+
```
|
55 |
+
|
56 |
+
## Training (with the RL Zoo)
|
57 |
+
```
|
58 |
+
python -m rl_zoo3.train --algo tqc --env PandaSlide-v3 -f logs/
|
59 |
+
# Upload the model and generate video (when possible)
|
60 |
+
python -m rl_zoo3.push_to_hub --algo tqc --env PandaSlide-v3 -f logs/ -orga chencliu
|
61 |
+
```
|
62 |
+
|
63 |
+
## Hyperparameters
|
64 |
+
```python
|
65 |
+
OrderedDict([('batch_size', 2048),
|
66 |
+
('buffer_size', 1000000),
|
67 |
+
('ent_coef', 'auto'),
|
68 |
+
('gamma', 0.95),
|
69 |
+
('learning_rate', 0.001),
|
70 |
+
('learning_starts', 100),
|
71 |
+
('n_timesteps', 3000000.0),
|
72 |
+
('normalize', True),
|
73 |
+
('policy', 'MultiInputPolicy'),
|
74 |
+
('policy_kwargs', 'dict(net_arch=[512, 512, 512], n_critics=2)'),
|
75 |
+
('replay_buffer_class', 'HerReplayBuffer'),
|
76 |
+
('replay_buffer_kwargs',
|
77 |
+
"dict( goal_selection_strategy='future', n_sampled_goal=4 )"),
|
78 |
+
('tau', 0.05),
|
79 |
+
('normalize_kwargs', {'norm_obs': True, 'norm_reward': False})])
|
80 |
+
```
|
81 |
+
|
82 |
+
# Environment Arguments
|
83 |
+
```python
|
84 |
+
{'render_mode': 'rgb_array'}
|
85 |
+
```
|
args.yml
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - algo
|
3 |
+
- tqc
|
4 |
+
- - conf_file
|
5 |
+
- null
|
6 |
+
- - device
|
7 |
+
- auto
|
8 |
+
- - env
|
9 |
+
- PandaSlide-v3
|
10 |
+
- - env_kwargs
|
11 |
+
- null
|
12 |
+
- - eval_env_kwargs
|
13 |
+
- null
|
14 |
+
- - eval_episodes
|
15 |
+
- 5
|
16 |
+
- - eval_freq
|
17 |
+
- 25000
|
18 |
+
- - gym_packages
|
19 |
+
- []
|
20 |
+
- - hyperparams
|
21 |
+
- null
|
22 |
+
- - log_folder
|
23 |
+
- logs/
|
24 |
+
- - log_interval
|
25 |
+
- -1
|
26 |
+
- - max_total_trials
|
27 |
+
- null
|
28 |
+
- - n_eval_envs
|
29 |
+
- 1
|
30 |
+
- - n_evaluations
|
31 |
+
- null
|
32 |
+
- - n_jobs
|
33 |
+
- 1
|
34 |
+
- - n_startup_trials
|
35 |
+
- 10
|
36 |
+
- - n_timesteps
|
37 |
+
- -1
|
38 |
+
- - n_trials
|
39 |
+
- 500
|
40 |
+
- - no_optim_plots
|
41 |
+
- false
|
42 |
+
- - num_threads
|
43 |
+
- -1
|
44 |
+
- - optimization_log_path
|
45 |
+
- null
|
46 |
+
- - optimize_hyperparameters
|
47 |
+
- false
|
48 |
+
- - progress
|
49 |
+
- false
|
50 |
+
- - pruner
|
51 |
+
- median
|
52 |
+
- - sampler
|
53 |
+
- tpe
|
54 |
+
- - save_freq
|
55 |
+
- -1
|
56 |
+
- - save_replay_buffer
|
57 |
+
- false
|
58 |
+
- - seed
|
59 |
+
- 1526934768
|
60 |
+
- - storage
|
61 |
+
- null
|
62 |
+
- - study_name
|
63 |
+
- null
|
64 |
+
- - tensorboard_log
|
65 |
+
- ''
|
66 |
+
- - track
|
67 |
+
- false
|
68 |
+
- - trained_agent
|
69 |
+
- ''
|
70 |
+
- - truncate_last_trajectory
|
71 |
+
- true
|
72 |
+
- - uuid
|
73 |
+
- false
|
74 |
+
- - vec_env
|
75 |
+
- dummy
|
76 |
+
- - verbose
|
77 |
+
- 1
|
78 |
+
- - wandb_entity
|
79 |
+
- null
|
80 |
+
- - wandb_project_name
|
81 |
+
- sb3
|
82 |
+
- - wandb_tags
|
83 |
+
- []
|
config.yml
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
!!python/object/apply:collections.OrderedDict
|
2 |
+
- - - batch_size
|
3 |
+
- 2048
|
4 |
+
- - buffer_size
|
5 |
+
- 1000000
|
6 |
+
- - ent_coef
|
7 |
+
- auto
|
8 |
+
- - gamma
|
9 |
+
- 0.95
|
10 |
+
- - learning_rate
|
11 |
+
- 0.001
|
12 |
+
- - learning_starts
|
13 |
+
- 100
|
14 |
+
- - n_timesteps
|
15 |
+
- 3000000.0
|
16 |
+
- - normalize
|
17 |
+
- true
|
18 |
+
- - policy
|
19 |
+
- MultiInputPolicy
|
20 |
+
- - policy_kwargs
|
21 |
+
- dict(net_arch=[512, 512, 512], n_critics=2)
|
22 |
+
- - replay_buffer_class
|
23 |
+
- HerReplayBuffer
|
24 |
+
- - replay_buffer_kwargs
|
25 |
+
- dict( goal_selection_strategy='future', n_sampled_goal=4 )
|
26 |
+
- - tau
|
27 |
+
- 0.05
|
env_kwargs.yml
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
render_mode: rgb_array
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:249008839b5227f0f4362ffde1a599ab4068d4a9588159bd4310aefbde18b966
|
3 |
+
size 1036267
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -10.0, "std_reward": 2.1447610589527217, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-06T11:28:32.117778"}
|
tqc-PandaSlide-v3.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3855837fca2fcc6107945dd156f4a6df9f514969e57b67107ac0f7476b0fe075
|
3 |
+
size 24230586
|
tqc-PandaSlide-v3/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.1.0
|
tqc-PandaSlide-v3/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bddf3797506628660c3a273fdd3a087e33171a3ba4bf6333933f4364dc74e1e7
|
3 |
+
size 4337611
|
tqc-PandaSlide-v3/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:864b53c4f091cdb4e1f98214dd1c7b57340d40f9bd45c470b76f9ccc80bff81f
|
3 |
+
size 8852565
|
tqc-PandaSlide-v3/data
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVMQAAAAAAAACMGHNiM19jb250cmliLnRxYy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "sb3_contrib.tqc.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TQC.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param use_expln: Use ``expln()`` function instead of ``exp()`` when using gSDE to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param clip_mean: Clip the mean output when using gSDE to avoid numerical instability.\n :param features_extractor_class: Features extractor to use.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_quantiles: Number of quantiles for the critic.\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x7fc1ecebb880>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc1eced5c40>"
|
10 |
+
},
|
11 |
+
"verbose": 1,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"net_arch": [
|
14 |
+
512,
|
15 |
+
512,
|
16 |
+
512
|
17 |
+
],
|
18 |
+
"n_critics": 2,
|
19 |
+
"use_sde": false
|
20 |
+
},
|
21 |
+
"num_timesteps": 3000000,
|
22 |
+
"_total_timesteps": 3000000,
|
23 |
+
"_num_timesteps_at_start": 0,
|
24 |
+
"seed": 0,
|
25 |
+
"action_noise": null,
|
26 |
+
"start_time": 1696495545839147064,
|
27 |
+
"learning_rate": {
|
28 |
+
":type:": "<class 'function'>",
|
29 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
30 |
+
},
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": null,
|
33 |
+
"_last_episode_starts": {
|
34 |
+
":type:": "<class 'numpy.ndarray'>",
|
35 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
36 |
+
},
|
37 |
+
"_last_original_obs": {
|
38 |
+
":type:": "<class 'collections.OrderedDict'>",
|
39 |
+
":serialized:": "gAWVWwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgwAAAAAAAAAQ2nZvRzmvjyoS7I8lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgwAAAAAAAAAAIEFP7t7ub2PwvU8lGgOSwFLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWSAAAAAAAAABp6ZE8E0C7PIRWLT5D6FS/jfFYP+IThL9Dadm9HOa+PKhLsjwAAAAAAAAAgAAAAAAAAAAAAAAAAKG3yL4AAAAAAAAAAAAAAACUaA5LAUsShpRoEnSUUpR1Lg==",
|
40 |
+
"achieved_goal": "[[-0.1061578 0.02330308 0.02176459]]",
|
41 |
+
"desired_goal": "[[ 0.52149963 -0.09056803 0.03 ]]",
|
42 |
+
"observation": "[[ 0.01781149 0.0228577 0.16927534 -0.83166903 0.8474358 -1.0318568\n -0.1061578 0.02330308 0.02176459 0. -0. 0.\n 0. 0. -0.39202598 0. 0. 0. ]]"
|
43 |
+
},
|
44 |
+
"_episode_num": 192717,
|
45 |
+
"use_sde": false,
|
46 |
+
"sde_sample_freq": -1,
|
47 |
+
"_current_progress_remaining": 0.0,
|
48 |
+
"_stats_window_size": 100,
|
49 |
+
"ep_info_buffer": {
|
50 |
+
":type:": "<class 'collections.deque'>",
|
51 |
+
":serialized:": "gAWVFw0AAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCIAAAAAAACMAWyUSwqMAXSUR0DrXR37GecyjAppc19zdWNjZXNzlIh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOtdJA3FUAFoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtdKyVSn+BoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtdMnAmAsloCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQOtdN84aP0ZoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOtdP5H3DeloCYh1fZQoaAZHwC4AAAAAAABoB0sQaAhHQOtdSQrhBJJoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtdT8lHBk9oCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtdVupda+xoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtdXXX5FgFoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtdZA+MZP5oCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtdatoakyloCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtdcXRoh6loCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtdeBQBPsRoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtdfpiXpnpoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOtdhNRgqmVoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQOtdiZLdvbZoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtdkCebutxoCYh1fZQoaAZHwCwAAAAAAABoB0sPaAhHQOtdmR5s0pFoCYh1fZQoaAZHwCoAAAAAAABoB0sOaAhHQOtdob2tdRloCYh1fZQoaAZHwCwAAAAAAABoB0sPaAhHQOtdqrQb+99oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOtdsJ9Tgl5oCYh1fZQoaAZHwC4AAAAAAABoB0sQaAhHQOtdui2phndoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOtdwjnFHaxoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQOtdx5S9/SZoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOtdzZnrY5FoCYh1fZQoaAZHwCwAAAAAAABoB0sPaAhHQOtd1n3QD3doCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtd3UWj459oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOtd403CKrJoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtd6nwmVqxoCYh1fZQoaAZHwC4AAAAAAABoB0sQaAhHQOtd9AIfKZFoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtd+3vx6OZoCYh1fZQoaAZHwCwAAAAAAABoB0sPaAhHQOteBG9alk9oCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOteDC19fC1oCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOteE27tiQVoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOteGadJ8OVoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQOteHwuqWC5oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOteJRGtp25oCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOteK6Rhc7hoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQOteMNsFdLRoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOteNr9qDbtoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOtePL9l2/1oCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOteQ+aOPvNoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOteSqhakh1oCYh1fZQoaAZHwCoAAAAAAABoB0sOaAhHQOteUvuE25xoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOteWsrGza9oCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOteYgkAxSJoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOteaWEGqxVoCYh1fZQoaAZHwC4AAAAAAABoB0sQaAhHQOtect7ngYRoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOteeXm/339oCYh1fZQoaAZHwCwAAAAAAABoB0sPaAhHQOtegm1c+q1oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQOteh3Xd0q9oCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtejo5FPSFoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtelTZcs19oCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQOtemfPPcBVoCYh1fZQoaAZHwCwAAAAAAABoB0sPaAhHQOteoy+YdABoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOteqvdGiHtoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOtesOGIsRRoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtet/wkPc1oCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtev1AmiQFoCYh1fZQoaAZHwCwAAAAAAABoB0sPaAhHQOteyGVE/jdoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtez43aSLZoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOte119F4LVoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOte3s3juKJoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOte5hXCCSRoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOte7LUG3WpoCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOte8rowEhdoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOte+hg3LmpoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtfAMmBvrJoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtfB3UUfxNoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtfDqpiqhloCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtfFXBnBcloCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOtfHToMa0hoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtfI+e18b9oCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQOtfKUTSLIhoCYh1fZQoaAZHwCoAAAAAAABoB0sOaAhHQOtfMeBz3h5oCYh1fZQoaAZHwEkAAAAAAABoB0syaAhHQOtfT5/b0vpoCYl1fZQoaAZHwCoAAAAAAABoB0sOaAhHQOtfWAfp2U1oCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtfXonv2GtoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQOtfZCmO2iNoCYh1fZQoaAZHwCoAAAAAAABoB0sOaAhHQOtfbIHmig1oCYh1fZQoaAZHwCoAAAAAAABoB0sOaAhHQOtfdOQCCBhoCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtfe3qqwQloCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtfguii7CloCYh1fZQoaAZHwCoAAAAAAABoB0sOaAhHQOtfizqD9O1oCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtfklM495hoCYh1fZQoaAZHwCAAAAAAAABoB0sJaAhHQOtfl7oGIKtoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOtfn8gMc6xoCYh1fZQoaAZHwBwAAAAAAABoB0sIaAhHQOtfpJEKE39oCYh1fZQoaAZHwCQAAAAAAABoB0sLaAhHQOtfqzyBkI5oCYh1fZQoaAZHwCIAAAAAAABoB0sKaAhHQOtfsS15Sm9oCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtfuIsTWXloCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtfv8rqdH5oCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOtfx6Ac1fpoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtfzrMaCMBoCYh1fZQoaAZHwCYAAAAAAABoB0sMaAhHQOtf1hfMOgBoCYh1fZQoaAZHwCoAAAAAAABoB0sOaAhHQOtf3nA0sOJoCYh1fZQoaAZHwCgAAAAAAABoB0sNaAhHQOtf5jvG6wtoCYh1fZQoaAZHwC4AAAAAAABoB0sQaAhHQOtf78gbIcRoCYh1fZQoaAZHwC4AAAAAAABoB0sQaAhHQOtf+YGbCrNoCYh1ZS4="
|
52 |
+
},
|
53 |
+
"ep_success_buffer": {
|
54 |
+
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWVhgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiJiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIhlLg=="
|
56 |
+
},
|
57 |
+
"_n_updates": 2999900,
|
58 |
+
"observation_space": {
|
59 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
60 |
+
":serialized:": "gAWVKAQAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCdoHCiWEgAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQGUaCBLEoWUaCR0lFKUaCxLEoWUaC5oHCiWSAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLEoWUaCR0lFKUaDNoHCiWSAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLEoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==",
|
61 |
+
"spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (18,), float32))])",
|
62 |
+
"_shape": null,
|
63 |
+
"dtype": null,
|
64 |
+
"_np_random": null
|
65 |
+
},
|
66 |
+
"action_space": {
|
67 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
68 |
+
":serialized:": "gAWVYAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDjYZWmt15YCS1Fllk0taEajANpbmOUihCpc3hEvDOBWIIa9zrb2o1BdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==",
|
69 |
+
"dtype": "float32",
|
70 |
+
"bounded_below": "[ True True True]",
|
71 |
+
"bounded_above": "[ True True True]",
|
72 |
+
"_shape": [
|
73 |
+
3
|
74 |
+
],
|
75 |
+
"low": "[-1. -1. -1.]",
|
76 |
+
"high": "[1. 1. 1.]",
|
77 |
+
"low_repr": "-1.0",
|
78 |
+
"high_repr": "1.0",
|
79 |
+
"_np_random": "Generator(PCG64)"
|
80 |
+
},
|
81 |
+
"n_envs": 1,
|
82 |
+
"buffer_size": 1,
|
83 |
+
"batch_size": 2048,
|
84 |
+
"learning_starts": 100,
|
85 |
+
"tau": 0.05,
|
86 |
+
"gamma": 0.95,
|
87 |
+
"gradient_steps": 1,
|
88 |
+
"optimize_memory_usage": false,
|
89 |
+
"replay_buffer_class": {
|
90 |
+
":type:": "<class 'abc.ABCMeta'>",
|
91 |
+
":serialized:": "gAWVPwAAAAAAAACMJ3N0YWJsZV9iYXNlbGluZXMzLmhlci5oZXJfcmVwbGF5X2J1ZmZlcpSMD0hlclJlcGxheUJ1ZmZlcpSTlC4=",
|
92 |
+
"__module__": "stable_baselines3.her.her_replay_buffer",
|
93 |
+
"__doc__": "\n Hindsight Experience Replay (HER) buffer.\n Paper: https://arxiv.org/abs/1707.01495\n\n Replay buffer for sampling HER (Hindsight Experience Replay) transitions.\n\n .. note::\n\n Compared to other implementations, the ``future`` goal sampling strategy is inclusive:\n the current transition can be used when re-sampling.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param env: The training environment\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n Disabled for now (see https://github.com/DLR-RM/stable-baselines3/pull/243#discussion_r531535702)\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n :param n_sampled_goal: Number of virtual transitions to create per real transition,\n by sampling new goals.\n :param goal_selection_strategy: Strategy for sampling goals for replay.\n One of ['episode', 'final', 'future']\n :param copy_info_dict: Whether to copy the info dictionary and pass it to\n ``compute_reward()`` method.\n Please note that the copy may cause a slowdown.\n False by default.\n ",
|
94 |
+
"__init__": "<function HerReplayBuffer.__init__ at 0x7fc1ed239fc0>",
|
95 |
+
"__getstate__": "<function HerReplayBuffer.__getstate__ at 0x7fc1ed23a050>",
|
96 |
+
"__setstate__": "<function HerReplayBuffer.__setstate__ at 0x7fc1ed23a0e0>",
|
97 |
+
"set_env": "<function HerReplayBuffer.set_env at 0x7fc1ed23a170>",
|
98 |
+
"add": "<function HerReplayBuffer.add at 0x7fc1ed23a200>",
|
99 |
+
"_compute_episode_length": "<function HerReplayBuffer._compute_episode_length at 0x7fc1ed23a290>",
|
100 |
+
"sample": "<function HerReplayBuffer.sample at 0x7fc1ed23a320>",
|
101 |
+
"_get_real_samples": "<function HerReplayBuffer._get_real_samples at 0x7fc1ed23a3b0>",
|
102 |
+
"_get_virtual_samples": "<function HerReplayBuffer._get_virtual_samples at 0x7fc1ed23a440>",
|
103 |
+
"_sample_goals": "<function HerReplayBuffer._sample_goals at 0x7fc1ed23a4d0>",
|
104 |
+
"truncate_last_trajectory": "<function HerReplayBuffer.truncate_last_trajectory at 0x7fc1ed23a560>",
|
105 |
+
"__abstractmethods__": "frozenset()",
|
106 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fc1ed24c600>"
|
107 |
+
},
|
108 |
+
"replay_buffer_kwargs": {
|
109 |
+
"goal_selection_strategy": "future",
|
110 |
+
"n_sampled_goal": 4
|
111 |
+
},
|
112 |
+
"train_freq": {
|
113 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
114 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
115 |
+
},
|
116 |
+
"use_sde_at_warmup": false,
|
117 |
+
"target_entropy": -3.0,
|
118 |
+
"ent_coef": "auto",
|
119 |
+
"target_update_interval": 1,
|
120 |
+
"top_quantiles_to_drop_per_net": 2,
|
121 |
+
"lr_schedule": {
|
122 |
+
":type:": "<class 'function'>",
|
123 |
+
":serialized:": "gAWV7wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMXi9ob21lL2xjYy9hbmFjb25kYTMvZW52cy9ybF96b28vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjF4vaG9tZS9sY2MvYW5hY29uZGEzL2VudnMvcmxfem9vL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9QYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
124 |
+
},
|
125 |
+
"batch_norm_stats": [],
|
126 |
+
"batch_norm_stats_target": []
|
127 |
+
}
|
tqc-PandaSlide-v3/ent_coef_optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c39898be0aa1ab7c4a85b43eb68348b5b1568a9e3f5dfe539d244432cbc10d9a
|
3 |
+
size 1507
|
tqc-PandaSlide-v3/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0faa2f1adf24299b17ffe25a3338f8ce4a17df8249e49ac00892165ff566ea34
|
3 |
+
size 11019239
|
tqc-PandaSlide-v3/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2565825362771099dc080f0c60e76bc3e6e65dfbb300c291f890999e7b75cd71
|
3 |
+
size 747
|
tqc-PandaSlide-v3/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.0-84-generic-x86_64-with-glibc2.31 # 93~20.04.1-Ubuntu SMP Wed Sep 6 16:15:40 UTC 2023
|
2 |
+
- Python: 3.10.0
|
3 |
+
- Stable-Baselines3: 2.1.0
|
4 |
+
- PyTorch: 2.0.1+cu117
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
train_eval_metrics.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8039fc5a45cb28b1ebcc2425e7404faff9fbeb7aad47f2aff73f0e73f32efafe
|
3 |
+
size 5324665
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:da8b31a7649a32ab2bab28c13d94259dc693db390717573ff5b69613d848d367
|
3 |
+
size 3082
|