cherifkhalifah commited on
Commit
2ac4994
1 Parent(s): f3ada72

Finetuned model on SNLI

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,423 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L12-v2
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - pearson_cosine
6
+ - spearman_cosine
7
+ - pearson_manhattan
8
+ - spearman_manhattan
9
+ - pearson_euclidean
10
+ - spearman_euclidean
11
+ - pearson_dot
12
+ - spearman_dot
13
+ - pearson_max
14
+ - spearman_max
15
+ pipeline_tag: sentence-similarity
16
+ tags:
17
+ - sentence-transformers
18
+ - sentence-similarity
19
+ - feature-extraction
20
+ - generated_from_trainer
21
+ - dataset_size:100
22
+ - loss:CosineSimilarityLoss
23
+ widget:
24
+ - source_sentence: Children smiling and waving at camera
25
+ sentences:
26
+ - There are women showing affection.
27
+ - The woman is waiting for a friend.
28
+ - There are children present
29
+ - source_sentence: A woman is walking across the street eating a banana, while a man
30
+ is following with his briefcase.
31
+ sentences:
32
+ - The boy does a skateboarding trick.
33
+ - A boy flips a burger.
34
+ - A woman eats a banana and walks across a street, and there is a man trailing behind
35
+ her.
36
+ - source_sentence: Two adults, one female in white, with shades and one male, gray
37
+ clothes, walking across a street, away from a eatery with a blurred image of a
38
+ dark colored red shirted person in the foreground.
39
+ sentences:
40
+ - An elderly man sits in a small shop.
41
+ - A person is training his horse for a competition.
42
+ - Two adults swimming in water
43
+ - source_sentence: The school is having a special event in order to show the american
44
+ culture on how other cultures are dealt with in parties.
45
+ sentences:
46
+ - The woman is wearing green.
47
+ - A school is hosting an event.
48
+ - The adults are both male and female.
49
+ - source_sentence: A woman is walking across the street eating a banana, while a man
50
+ is following with his briefcase.
51
+ sentences:
52
+ - The boy is wearing safety equipment.
53
+ - Two women are at a restaurant drinking wine.
54
+ - A person that is hungry.
55
+ model-index:
56
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
57
+ results:
58
+ - task:
59
+ type: semantic-similarity
60
+ name: Semantic Similarity
61
+ dataset:
62
+ name: snli dev
63
+ type: snli-dev
64
+ metrics:
65
+ - type: pearson_cosine
66
+ value: -0.6052519474756299
67
+ name: Pearson Cosine
68
+ - type: spearman_cosine
69
+ value: -0.6083622621490653
70
+ name: Spearman Cosine
71
+ - type: pearson_manhattan
72
+ value: -0.5848188618976576
73
+ name: Pearson Manhattan
74
+ - type: spearman_manhattan
75
+ value: -0.6065714846764287
76
+ name: Spearman Manhattan
77
+ - type: pearson_euclidean
78
+ value: -0.5863856474033792
79
+ name: Pearson Euclidean
80
+ - type: spearman_euclidean
81
+ value: -0.6083622185008256
82
+ name: Spearman Euclidean
83
+ - type: pearson_dot
84
+ value: -0.6052519468947102
85
+ name: Pearson Dot
86
+ - type: spearman_dot
87
+ value: -0.6083623057915619
88
+ name: Spearman Dot
89
+ - type: pearson_max
90
+ value: -0.5848188618976576
91
+ name: Pearson Max
92
+ - type: spearman_max
93
+ value: -0.6065714846764287
94
+ name: Spearman Max
95
+ ---
96
+
97
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
98
+
99
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
100
+
101
+ ## Model Details
102
+
103
+ ### Model Description
104
+ - **Model Type:** Sentence Transformer
105
+ - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 -->
106
+ - **Maximum Sequence Length:** 128 tokens
107
+ - **Output Dimensionality:** 384 tokens
108
+ - **Similarity Function:** Cosine Similarity
109
+ <!-- - **Training Dataset:** Unknown -->
110
+ <!-- - **Language:** Unknown -->
111
+ <!-- - **License:** Unknown -->
112
+
113
+ ### Model Sources
114
+
115
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
116
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
117
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
118
+
119
+ ### Full Model Architecture
120
+
121
+ ```
122
+ SentenceTransformer(
123
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
124
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
125
+ (2): Normalize()
126
+ )
127
+ ```
128
+
129
+ ## Usage
130
+
131
+ ### Direct Usage (Sentence Transformers)
132
+
133
+ First install the Sentence Transformers library:
134
+
135
+ ```bash
136
+ pip install -U sentence-transformers
137
+ ```
138
+
139
+ Then you can load this model and run inference.
140
+ ```python
141
+ from sentence_transformers import SentenceTransformer
142
+
143
+ # Download from the 🤗 Hub
144
+ model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2")
145
+ # Run inference
146
+ sentences = [
147
+ 'A woman is walking across the street eating a banana, while a man is following with his briefcase.',
148
+ 'A person that is hungry.',
149
+ 'Two women are at a restaurant drinking wine.',
150
+ ]
151
+ embeddings = model.encode(sentences)
152
+ print(embeddings.shape)
153
+ # [3, 384]
154
+
155
+ # Get the similarity scores for the embeddings
156
+ similarities = model.similarity(embeddings, embeddings)
157
+ print(similarities.shape)
158
+ # [3, 3]
159
+ ```
160
+
161
+ <!--
162
+ ### Direct Usage (Transformers)
163
+
164
+ <details><summary>Click to see the direct usage in Transformers</summary>
165
+
166
+ </details>
167
+ -->
168
+
169
+ <!--
170
+ ### Downstream Usage (Sentence Transformers)
171
+
172
+ You can finetune this model on your own dataset.
173
+
174
+ <details><summary>Click to expand</summary>
175
+
176
+ </details>
177
+ -->
178
+
179
+ <!--
180
+ ### Out-of-Scope Use
181
+
182
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
183
+ -->
184
+
185
+ ## Evaluation
186
+
187
+ ### Metrics
188
+
189
+ #### Semantic Similarity
190
+ * Dataset: `snli-dev`
191
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
192
+
193
+ | Metric | Value |
194
+ |:-------------------|:------------|
195
+ | pearson_cosine | -0.6053 |
196
+ | spearman_cosine | -0.6084 |
197
+ | pearson_manhattan | -0.5848 |
198
+ | spearman_manhattan | -0.6066 |
199
+ | pearson_euclidean | -0.5864 |
200
+ | spearman_euclidean | -0.6084 |
201
+ | pearson_dot | -0.6053 |
202
+ | spearman_dot | -0.6084 |
203
+ | pearson_max | -0.5848 |
204
+ | **spearman_max** | **-0.6066** |
205
+
206
+ <!--
207
+ ## Bias, Risks and Limitations
208
+
209
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
210
+ -->
211
+
212
+ <!--
213
+ ### Recommendations
214
+
215
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
216
+ -->
217
+
218
+ ## Training Details
219
+
220
+ ### Training Dataset
221
+
222
+ #### Unnamed Dataset
223
+
224
+
225
+ * Size: 100 training samples
226
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
227
+ * Approximate statistics based on the first 100 samples:
228
+ | | sentence_0 | sentence_1 | label |
229
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
230
+ | type | string | string | float |
231
+ | details | <ul><li>min: 8 tokens</li><li>mean: 23.59 tokens</li><li>max: 46 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 11.36 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.49</li><li>max: 1.0</li></ul> |
232
+ * Samples:
233
+ | sentence_0 | sentence_1 | label |
234
+ |:-------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------|:-----------------|
235
+ | <code>Woman in white in foreground and a man slightly behind walking with a sign for John's Pizza and Gyro in the background.</code> | <code>They are working for John's Pizza.</code> | <code>0.5</code> |
236
+ | <code>A man with blond-hair, and a brown shirt drinking out of a public water fountain.</code> | <code>A blond man getting a drink of water from a fountain in the park.</code> | <code>0.5</code> |
237
+ | <code>A woman is walking across the street eating a banana, while a man is following with his briefcase.</code> | <code>A person eating.</code> | <code>0.0</code> |
238
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
239
+ ```json
240
+ {
241
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
242
+ }
243
+ ```
244
+
245
+ ### Training Hyperparameters
246
+ #### Non-Default Hyperparameters
247
+
248
+ - `eval_strategy`: steps
249
+ - `per_device_train_batch_size`: 16
250
+ - `per_device_eval_batch_size`: 16
251
+ - `num_train_epochs`: 4
252
+ - `fp16`: True
253
+ - `multi_dataset_batch_sampler`: round_robin
254
+
255
+ #### All Hyperparameters
256
+ <details><summary>Click to expand</summary>
257
+
258
+ - `overwrite_output_dir`: False
259
+ - `do_predict`: False
260
+ - `eval_strategy`: steps
261
+ - `prediction_loss_only`: True
262
+ - `per_device_train_batch_size`: 16
263
+ - `per_device_eval_batch_size`: 16
264
+ - `per_gpu_train_batch_size`: None
265
+ - `per_gpu_eval_batch_size`: None
266
+ - `gradient_accumulation_steps`: 1
267
+ - `eval_accumulation_steps`: None
268
+ - `torch_empty_cache_steps`: None
269
+ - `learning_rate`: 5e-05
270
+ - `weight_decay`: 0.0
271
+ - `adam_beta1`: 0.9
272
+ - `adam_beta2`: 0.999
273
+ - `adam_epsilon`: 1e-08
274
+ - `max_grad_norm`: 1
275
+ - `num_train_epochs`: 4
276
+ - `max_steps`: -1
277
+ - `lr_scheduler_type`: linear
278
+ - `lr_scheduler_kwargs`: {}
279
+ - `warmup_ratio`: 0.0
280
+ - `warmup_steps`: 0
281
+ - `log_level`: passive
282
+ - `log_level_replica`: warning
283
+ - `log_on_each_node`: True
284
+ - `logging_nan_inf_filter`: True
285
+ - `save_safetensors`: True
286
+ - `save_on_each_node`: False
287
+ - `save_only_model`: False
288
+ - `restore_callback_states_from_checkpoint`: False
289
+ - `no_cuda`: False
290
+ - `use_cpu`: False
291
+ - `use_mps_device`: False
292
+ - `seed`: 42
293
+ - `data_seed`: None
294
+ - `jit_mode_eval`: False
295
+ - `use_ipex`: False
296
+ - `bf16`: False
297
+ - `fp16`: True
298
+ - `fp16_opt_level`: O1
299
+ - `half_precision_backend`: auto
300
+ - `bf16_full_eval`: False
301
+ - `fp16_full_eval`: False
302
+ - `tf32`: None
303
+ - `local_rank`: 0
304
+ - `ddp_backend`: None
305
+ - `tpu_num_cores`: None
306
+ - `tpu_metrics_debug`: False
307
+ - `debug`: []
308
+ - `dataloader_drop_last`: False
309
+ - `dataloader_num_workers`: 0
310
+ - `dataloader_prefetch_factor`: None
311
+ - `past_index`: -1
312
+ - `disable_tqdm`: False
313
+ - `remove_unused_columns`: True
314
+ - `label_names`: None
315
+ - `load_best_model_at_end`: False
316
+ - `ignore_data_skip`: False
317
+ - `fsdp`: []
318
+ - `fsdp_min_num_params`: 0
319
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
320
+ - `fsdp_transformer_layer_cls_to_wrap`: None
321
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
322
+ - `deepspeed`: None
323
+ - `label_smoothing_factor`: 0.0
324
+ - `optim`: adamw_torch
325
+ - `optim_args`: None
326
+ - `adafactor`: False
327
+ - `group_by_length`: False
328
+ - `length_column_name`: length
329
+ - `ddp_find_unused_parameters`: None
330
+ - `ddp_bucket_cap_mb`: None
331
+ - `ddp_broadcast_buffers`: False
332
+ - `dataloader_pin_memory`: True
333
+ - `dataloader_persistent_workers`: False
334
+ - `skip_memory_metrics`: True
335
+ - `use_legacy_prediction_loop`: False
336
+ - `push_to_hub`: False
337
+ - `resume_from_checkpoint`: None
338
+ - `hub_model_id`: None
339
+ - `hub_strategy`: every_save
340
+ - `hub_private_repo`: False
341
+ - `hub_always_push`: False
342
+ - `gradient_checkpointing`: False
343
+ - `gradient_checkpointing_kwargs`: None
344
+ - `include_inputs_for_metrics`: False
345
+ - `eval_do_concat_batches`: True
346
+ - `fp16_backend`: auto
347
+ - `push_to_hub_model_id`: None
348
+ - `push_to_hub_organization`: None
349
+ - `mp_parameters`:
350
+ - `auto_find_batch_size`: False
351
+ - `full_determinism`: False
352
+ - `torchdynamo`: None
353
+ - `ray_scope`: last
354
+ - `ddp_timeout`: 1800
355
+ - `torch_compile`: False
356
+ - `torch_compile_backend`: None
357
+ - `torch_compile_mode`: None
358
+ - `dispatch_batches`: None
359
+ - `split_batches`: None
360
+ - `include_tokens_per_second`: False
361
+ - `include_num_input_tokens_seen`: False
362
+ - `neftune_noise_alpha`: None
363
+ - `optim_target_modules`: None
364
+ - `batch_eval_metrics`: False
365
+ - `eval_on_start`: False
366
+ - `eval_use_gather_object`: False
367
+ - `batch_sampler`: batch_sampler
368
+ - `multi_dataset_batch_sampler`: round_robin
369
+
370
+ </details>
371
+
372
+ ### Training Logs
373
+ | Epoch | Step | snli-dev_spearman_max |
374
+ |:-----:|:----:|:---------------------:|
375
+ | 1.0 | 7 | -0.6099 |
376
+ | 2.0 | 14 | -0.6095 |
377
+ | 3.0 | 21 | -0.6085 |
378
+ | 4.0 | 28 | -0.6066 |
379
+
380
+
381
+ ### Framework Versions
382
+ - Python: 3.10.12
383
+ - Sentence Transformers: 3.1.1
384
+ - Transformers: 4.44.2
385
+ - PyTorch: 2.4.1+cu121
386
+ - Accelerate: 0.34.2
387
+ - Datasets: 3.0.1
388
+ - Tokenizers: 0.19.1
389
+
390
+ ## Citation
391
+
392
+ ### BibTeX
393
+
394
+ #### Sentence Transformers
395
+ ```bibtex
396
+ @inproceedings{reimers-2019-sentence-bert,
397
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
398
+ author = "Reimers, Nils and Gurevych, Iryna",
399
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
400
+ month = "11",
401
+ year = "2019",
402
+ publisher = "Association for Computational Linguistics",
403
+ url = "https://arxiv.org/abs/1908.10084",
404
+ }
405
+ ```
406
+
407
+ <!--
408
+ ## Glossary
409
+
410
+ *Clearly define terms in order to be accessible across audiences.*
411
+ -->
412
+
413
+ <!--
414
+ ## Model Card Authors
415
+
416
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
417
+ -->
418
+
419
+ <!--
420
+ ## Model Card Contact
421
+
422
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
423
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ae1fdef4ecbc40fce24222b3ac98aeee8f283960f2baedd3d394ffa036ce6533
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff