--- base_model: openai/whisper-small datasets: - audiofolder language: - ar library_name: transformers license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: quran-recitation-errors-test results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: audiofolder type: audiofolder config: default split: train args: default metrics: - type: wer value: 9.619238476953909 name: Wer --- # quran-recitation-errors-test This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the audiofolder dataset. It achieves the following results on the evaluation set: - Loss: 0.0732 - Wer: 9.6192 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.7162 | 1.6949 | 100 | 0.7662 | 89.5792 | | 0.5519 | 3.3898 | 200 | 0.5851 | 96.9940 | | 0.3149 | 5.0847 | 300 | 0.2195 | 59.9198 | | 0.0931 | 6.7797 | 400 | 0.1326 | 36.6733 | | 0.0072 | 8.4746 | 500 | 0.0732 | 9.6192 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.0+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1