Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- zh
|
5 |
+
library_name: transformers
|
6 |
+
quantized_by: chienweichang
|
7 |
+
---
|
8 |
+
|
9 |
+
# Breeze-7B-Instruct-v1_0-AWQ
|
10 |
+
|
11 |
+
- Model creator: [MediaTek Research](https://huggingface.co/MediaTek-Research)
|
12 |
+
- Original model: [Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0)
|
13 |
+
|
14 |
+
## Description
|
15 |
+
|
16 |
+
This repo contains AWQ model files for MediaTek Research's [Breeze-7B-Instruct-v1_0](https://huggingface.co/MediaTek-Research/Breeze-7B-Instruct-v1_0).
|
17 |
+
|
18 |
+
### About AWQ
|
19 |
+
|
20 |
+
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
|
21 |
+
|
22 |
+
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
|
23 |
+
|
24 |
+
It is supported by:
|
25 |
+
|
26 |
+
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
|
27 |
+
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
|
28 |
+
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
|
29 |
+
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
|
30 |
+
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
|
31 |
+
|
32 |
+
<!-- description end -->
|
33 |
+
<!-- repositories-available start -->
|
34 |
+
<!-- README_AWQ.md-use-from-vllm start -->
|
35 |
+
## Multi-user inference server: vLLM
|
36 |
+
|
37 |
+
Documentation on installing and using vLLM [can be found here](https://vllm.readthedocs.io/en/latest/).
|
38 |
+
|
39 |
+
- Please ensure you are using vLLM version 0.2 or later.
|
40 |
+
- When using vLLM as a server, pass the `--quantization awq` parameter.
|
41 |
+
|
42 |
+
For example:
|
43 |
+
|
44 |
+
```shell
|
45 |
+
python3 -m vllm.entrypoints.api_server \
|
46 |
+
--model chienweichang/Breeze-7B-Instruct-v1_0-AWQ \
|
47 |
+
--quantization awq \
|
48 |
+
--max-model-len 2048 \
|
49 |
+
--dtype auto
|
50 |
+
```
|
51 |
+
|
52 |
+
- When using vLLM from Python code, again set `quantization=awq`.
|
53 |
+
|
54 |
+
For example:
|
55 |
+
|
56 |
+
```python
|
57 |
+
from vllm import LLM, SamplingParams
|
58 |
+
prompts = [
|
59 |
+
"告訴我AI是什麼",
|
60 |
+
"(291 - 150) 是多少?",
|
61 |
+
"台灣最高的山是哪座?",
|
62 |
+
]
|
63 |
+
prompt_template='''[INST] {prompt} [/INST]
|
64 |
+
'''
|
65 |
+
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
|
66 |
+
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
|
67 |
+
llm = LLM(model="chienweichang/Breeze-7B-Instruct-v1_0-AWQ", quantization="awq", dtype="half", max_model_len=2048)
|
68 |
+
outputs = llm.generate(prompts, sampling_params)
|
69 |
+
# Print the outputs.
|
70 |
+
for output in outputs:
|
71 |
+
prompt = output.prompt
|
72 |
+
generated_text = output.outputs[0].text
|
73 |
+
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
|
74 |
+
```
|
75 |
+
|
76 |
+
<!-- README_AWQ.md-use-from-python start -->
|
77 |
+
## Inference from Python code using Transformers
|
78 |
+
|
79 |
+
### Install the necessary packages
|
80 |
+
|
81 |
+
- Requires: [Transformers](https://huggingface.co/docs/transformers) 4.37.0 or later.
|
82 |
+
- Requires: [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) 0.1.8 or later.
|
83 |
+
|
84 |
+
```shell
|
85 |
+
pip3 install --upgrade "autoawq>=0.1.8" "transformers>=4.37.0"
|
86 |
+
```
|
87 |
+
|
88 |
+
If you have problems installing [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) using the pre-built wheels, install it from source instead:
|
89 |
+
|
90 |
+
```shell
|
91 |
+
pip3 uninstall -y autoawq
|
92 |
+
git clone https://github.com/casper-hansen/AutoAWQ
|
93 |
+
cd AutoAWQ
|
94 |
+
pip3 install .
|
95 |
+
```
|
96 |
+
|
97 |
+
### Transformers example code (requires Transformers 4.37.0 and later)
|
98 |
+
|
99 |
+
```python
|
100 |
+
from transformers import AutoTokenizer, pipeline, TextStreamer, AutoModelForCausalLM
|
101 |
+
|
102 |
+
checkpoint = "chienweichang/Breeze-7B-Instruct-v1_0-AWQ"
|
103 |
+
model: AutoModelForCausalLM = AutoModelForCausalLM.from_pretrained(
|
104 |
+
checkpoint,
|
105 |
+
device_map="auto",
|
106 |
+
use_safetensors=True,
|
107 |
+
)
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained(checkpoint, trust_remote_code=True)
|
109 |
+
|
110 |
+
streamer = TextStreamer(tokenizer, skip_prompt=True)
|
111 |
+
|
112 |
+
# 創建一個用於文本生成的pipeline。
|
113 |
+
text_generation_pipeline = pipeline(
|
114 |
+
"text-generation",
|
115 |
+
model=model,
|
116 |
+
tokenizer=tokenizer,
|
117 |
+
use_cache=True,
|
118 |
+
device_map="auto",
|
119 |
+
max_length=32768,
|
120 |
+
do_sample=True,
|
121 |
+
top_k=5,
|
122 |
+
num_return_sequences=1,
|
123 |
+
streamer=streamer,
|
124 |
+
eos_token_id=tokenizer.eos_token_id,
|
125 |
+
pad_token_id=tokenizer.eos_token_id,
|
126 |
+
)
|
127 |
+
# Inference is also possible via Transformers' pipeline
|
128 |
+
print("pipeline output: ", text_generation_pipeline.predict("請問台灣最高的山是?"))
|
129 |
+
```
|