Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
### Welcome to **RoBERTArg**!
|
2 |
|
3 |
π€ **Model description**
|
@@ -6,7 +12,7 @@ This model was trained on ~25k heterogeneous manually annotated sentences (π
|
|
6 |
|
7 |
π **Dataset**
|
8 |
|
9 |
-
The dataset (π Stab et al. 2018) consists of **ARGUMENTS** (
|
10 |
|
11 |
| TOPIC | ARGUMENT | NON-ARGUMENT |
|
12 |
|----|----|----|
|
@@ -54,7 +60,4 @@ The model can be a starting point to dive into the exciting area of argument min
|
|
54 |
|
55 |
Enjoy and stay tuned! π
|
56 |
|
57 |
-
πStab et al. (2018): Cross-topic Argument Mining from Heterogeneous Sources. [LINK](https://www.aclweb.org/anthology/D18-1402/).
|
58 |
-
|
59 |
-
widget:
|
60 |
-
- text: "Mi estas viro kej estas tago varma."
|
|
|
1 |
+
---
|
2 |
+
language: english
|
3 |
+
widget:
|
4 |
+
- text: "Mi estas viro kej estas tago varma."
|
5 |
+
---
|
6 |
+
|
7 |
### Welcome to **RoBERTArg**!
|
8 |
|
9 |
π€ **Model description**
|
|
|
12 |
|
13 |
π **Dataset**
|
14 |
|
15 |
+
The dataset (π Stab et al. 2018) consists of **ARGUMENTS** (~11k) that either support or oppose a topic if it includes a relevant reason for supporting or opposing the topic, or as a **NON-ARGUMENT** (~14k) if it does not include reasons. The authors focus on controversial topics, i.e., topics that include an obvious polarity to the possible outcomes and compile a final set of eight controversial topics: _abortion, school uniforms, death penalty, marijuana legalization, nuclear energy, cloning, gun control, and minimum wage_.
|
16 |
|
17 |
| TOPIC | ARGUMENT | NON-ARGUMENT |
|
18 |
|----|----|----|
|
|
|
60 |
|
61 |
Enjoy and stay tuned! π
|
62 |
|
63 |
+
πStab et al. (2018): Cross-topic Argument Mining from Heterogeneous Sources. [LINK](https://www.aclweb.org/anthology/D18-1402/).
|
|
|
|
|
|