--- license: mit --- github: https://github.com/chongzicbo/MathImg2Latex/tree/main ``` import torch from PIL import Image from transformers import VisionEncoderDecoderModel from transformers.models.nougat import NougatTokenizerFast from nougat_latex.util import process_raw_latex_code from nougat_latex import NougatLaTexProcessor os.environ["RUN_ON_GPU_IDs"] = "1" device = torch.device("cpu") model_path = "chongzicbo/MathImg2Latex" tokenizer = NougatTokenizerFast.from_pretrained(model_path) latex_processor = NougatLaTexProcessor.from_pretrained(model_path) model = VisionEncoderDecoderModel.from_pretrained(model_path) model.to(device) img_path = "/data/code/MathOCR/MathImg2Latex/examples/test_data/test86_screenshot_bigger.jpg" image = Image.open(img_path) if not image.mode == "RGB": image = image.convert("RGB") pixel_values = latex_processor(image, return_tensors="pt").pixel_values task_prompt = tokenizer.bos_token decoder_input_ids = tokenizer( task_prompt, add_special_tokens=False, return_tensors="pt" ).input_ids with torch.no_grad(): outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_length, early_stopping=True, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id, use_cache=True, num_beams=1, bad_words_ids=[[tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = tokenizer.batch_decode(outputs.sequences)[0] sequence = ( sequence.replace(tokenizer.eos_token, "") .replace(tokenizer.pad_token, "") .replace(tokenizer.bos_token, "") ) sequence = process_raw_latex_code(sequence) print(sequence) ```