--- library_name: transformers license: llama3.2 base_model: meta-llama/Llama-3.2-3B tags: - axolotl - generated_from_trainer model-index: - name: llama-3.2-3B-rowiki results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.5.0` ```yaml base_model: meta-llama/Llama-3.2-3B model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer plugins: - axolotl.integrations.liger.LigerPlugin liger_rope: true liger_rms_norm: true liger_glu_activation: true liger_fused_linear_cross_entropy: true load_in_8bit: false load_in_4bit: false strict: false datasets: - path: chrisgru/ro_wiki_chatml_small type: chat_template chat_template: llama3 field_messages: conversations message_field_role: from message_field_content: value dataset_prepared_path: /workspace/data/ds_preprocess val_set_size: 0.01 output_dir: ./data/outputs sequence_len: 8192 sample_packing: true pad_to_sequence_len: true #adapter: lora ##lora_model_dir: #lora_r: 64 #lora_alpha: 16 #lora_dropout: 0.05 #lora_target_linear: true #lora_fan_in_fan_out: #lora_modules_to_save: # - embed_tokens # - lm_head wandb_project: wiki-llm wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 1 num_epochs: 1 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 5e-5 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 20 evals_per_epoch: 10 eval_table_size: saves_per_epoch: 1 #eval_max_new_tokens: 128 save_total_limit: 2 debug: #deepspeed: weight_decay: 0.0 # fsdp: # - full_shard # - auto_wrap # fsdp_config: # fsdp_limit_all_gathers: true # fsdp_sync_module_states: true # fsdp_offload_params: true # fsdp_use_orig_params: false # fsdp_cpu_ram_efficient_loading: true # fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP # fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer # fsdp_state_dict_type: FULL_STATE_DICT # fsdp_sharding_strategy: FULL_SHARD # fsdp_backward_prefetch: BACKWARD_PRE seed: 1234 hf_use_auth_token: true hub_strategy: end hub_model_id: chrisgru/llama-3.2-3B-rowiki special_tokens: bos_token: "<|begin_of_text|>" pad_token: "<|finetune_right_pad_id|>" ```

# llama-3.2-3B-rowiki This model is a fine-tuned version of [meta-llama/Llama-3.2-3B](https://huggingface.co/meta-llama/Llama-3.2-3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.5161 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 1234 - gradient_accumulation_steps: 4 - total_train_batch_size: 4 - optimizer: Use paged_adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 20 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.4683 | 0.0009 | 1 | 1.6826 | | 1.7777 | 0.1001 | 117 | 1.6274 | | 1.4701 | 0.2003 | 234 | 1.6031 | | 1.6591 | 0.3004 | 351 | 1.5815 | | 1.664 | 0.4006 | 468 | 1.5587 | | 1.5308 | 0.5007 | 585 | 1.5404 | | 1.3583 | 0.6009 | 702 | 1.5268 | | 1.4297 | 0.7010 | 819 | 1.5198 | | 1.7561 | 0.8012 | 936 | 1.5168 | | 1.6656 | 0.9013 | 1053 | 1.5161 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.3.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.3