Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model:
|
3 |
+
- princeton-nlp/Llama-3-8B-ProLong-512k-Instruct
|
4 |
+
license: apache-2.0
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
datasets:
|
8 |
+
- chtmp223/CLIPPER
|
9 |
+
---
|
10 |
+
|
11 |
+
# ProLong-512k-8B-CLIPPER
|
12 |
+
ProLong-512k-8B-CLIPPER is a fine-tuned version of princeton-nlp/Llama-3-8B-ProLong-512k-Instruct using supervised finetuning over chtmp223/CLIPPER dataset.
|
13 |
+
Please check [our paper](https://arxiv.org/abs/2502.14854) for more details on the method.
|
14 |
+
|
15 |
+
## 📒 Model Details
|
16 |
+
|
17 |
+
### Model Description
|
18 |
+
|
19 |
+
- **Language(s) (NLP):** English
|
20 |
+
- **License:** Apache-2.0
|
21 |
+
- **Finetuned from model:** princeton-nlp/Llama-3-8B-ProLong-512k-Instruct](https://huggingface.co/princeton-nlp/Llama-3-8B-ProLong-512k-Instruct)
|
22 |
+
|
23 |
+
### Model Sources
|
24 |
+
|
25 |
+
- **Repository:** [Github repository](https://github.com/chtmp223/CLIPPER).
|
26 |
+
- **Paper:** [https://arxiv.org/abs/2502.14854](https://arxiv.org/abs/2502.14854)
|
27 |
+
|
28 |
+
|
29 |
+
## 💻 Training Details
|
30 |
+
|
31 |
+
### Training Data
|
32 |
+
|
33 |
+
[chtmp223/CLIPPER](https://huggingface.co/datasets/chtmp223/CLIPPER)
|
34 |
+
|
35 |
+
### Training Procedure
|
36 |
+
|
37 |
+
| **Configurations** | **Values** |
|
38 |
+
|----------------------------------|--------------|
|
39 |
+
| Hardware (Training and Inference)| 8xA100s |
|
40 |
+
| Tracking | wandb |
|
41 |
+
| batch size | 16 |
|
42 |
+
| gradient_checkpointing | True |
|
43 |
+
| learning_rate | 1.0e-6 |
|
44 |
+
| lr_scheduler_type | cosine |
|
45 |
+
| max_length | 131072 |
|
46 |
+
| num_train_epochs | 1 |
|
47 |
+
| optim | adamw_torch |
|
48 |
+
|
49 |
+
#### Software
|
50 |
+
|
51 |
+
Training code is adapted from [https://github.com/princeton-nlp/ProLong](https://github.com/princeton-nlp/ProLong).
|
52 |
+
|
53 |
+
## 🤗 Inference
|
54 |
+
Inference is done with [vLLM](https://github.com/vllm-project/vllm) on 1 A100-80GB.
|
55 |
+
|
56 |
+
|
57 |
+
## 📜 Citation
|
58 |
+
|
59 |
+
```
|
60 |
+
@misc{pham2025clippercompressionenableslongcontext,
|
61 |
+
title={CLIPPER: Compression enables long-context synthetic data generation},
|
62 |
+
author={Chau Minh Pham and Yapei Chang and Mohit Iyyer},
|
63 |
+
year={2025},
|
64 |
+
eprint={2502.14854},
|
65 |
+
archivePrefix={arXiv},
|
66 |
+
primaryClass={cs.CL},
|
67 |
+
url={https://arxiv.org/abs/2502.14854},
|
68 |
+
}
|
69 |
+
```
|