|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Telechat configuration""" |
|
|
|
from packaging import version |
|
from collections import OrderedDict |
|
from transformers.utils import is_torch_available, logging |
|
from transformers.configuration_utils import PretrainedConfig |
|
from typing import TYPE_CHECKING, Any, List, Mapping, Optional |
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
class Telechat2Config(PretrainedConfig): |
|
""" |
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 160256): Vocabulary size of the Telechat model. |
|
hidden_size (`int`, *optional*, defaults to 4096): Dimensionality of the embeddings and hidden states. |
|
ffn_hidden_size (`int`, *optional*, defaults to 12288): Dimensionality of the feed-forward hidden states. |
|
n_layer (`int`, *optional*, defaults to 30): Number of hidden layers in the Transformer |
|
n_head (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): The epsilon to use in the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): If enabled, use the layer norm of the hidden states as the residual in the transformer blocks |
|
hidden_dropout (`float`, *optional*, defaults to 0.0): Dropout rate of the dropout function on the bias dropout. |
|
attention_dropout (`float`, *optional*, defaults to 0.0): Dropout rate applied to the attention probs |
|
use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions. |
|
training_seqlen (`int`, *optional*, defaults to 8192): Sequence length during last finetuning. |
|
logn (`bool`, *optional*, defaults to `True`): Whether or not to use logN during extrapolation. |
|
embed_layernorm (`bool`, *optional*, defaults to `True`): Whether or not to use embedding layernorm. |
|
|
|
""" |
|
|
|
model_type = "telechat" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
attribute_map = { |
|
"num_hidden_layers": "n_layer", |
|
"num_attention_heads": "n_head", |
|
} |
|
|
|
def __init__( |
|
self, |
|
vocab_size=160256, |
|
hidden_size=4096, |
|
n_layer=30, |
|
n_head=32, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
use_cache=True, |
|
bos_token_id=1, |
|
eos_token_id=2, |
|
apply_residual_connection_post_layernorm=False, |
|
hidden_dropout=0.0, |
|
attention_dropout=0.0, |
|
ffn_hidden_size=12288, |
|
training_seqlen = 8192, |
|
logn = True, |
|
embed_layernorm = False, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
n_embed = kwargs.pop("n_embed", None) |
|
self.hidden_size = hidden_size if n_embed is None else n_embed |
|
self.n_layer = n_layer |
|
self.n_head = n_head |
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
self.use_cache = use_cache |
|
self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm |
|
self.hidden_dropout = hidden_dropout |
|
self.attention_dropout = attention_dropout |
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
self.logn = logn |
|
self.ffn_hidden_size = ffn_hidden_size |
|
self.training_seqlen = training_seqlen |
|
self.embed_layernorm = embed_layernorm |
|
self.num_key_value_heads= kwargs.pop("num_key_value_heads", None) |
|
|
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
|