--- tags: - generated_from_trainer datasets: - klue metrics: - accuracy model-index: - name: klue_nli_roberta_base_model results: - task: name: Text Classification type: text-classification dataset: name: klue type: klue config: nli split: validation args: nli metrics: - name: Accuracy type: accuracy value: 0.8653333333333333 --- # klue_nli_roberta_base_model This model is a fine-tuned version of [klue/roberta-base](https://huggingface.co/klue/roberta-base) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.6867 - Accuracy: 0.8653 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5988 | 1.0 | 782 | 0.4378 | 0.8363 | | 0.2753 | 2.0 | 1564 | 0.4169 | 0.851 | | 0.1735 | 3.0 | 2346 | 0.5267 | 0.8607 | | 0.0956 | 4.0 | 3128 | 0.6275 | 0.8683 | | 0.0708 | 5.0 | 3910 | 0.6867 | 0.8653 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3