File size: 1,905 Bytes
26c3a37
3bf8aaa
 
 
8874b3a
894e602
 
8874b3a
 
bbf05f6
 
3bf8aaa
 
 
8874b3a
3bf8aaa
 
 
 
 
 
 
8874b3a
3bf8aaa
8874b3a
26c3a37
bbf05f6
 
 
 
 
 
3bf8aaa
894e602
3bf8aaa
 
bbf05f6
 
 
 
 
 
 
 
 
 
 
3bf8aaa
 
 
bbf05f6
 
 
 
 
 
 
 
3bf8aaa
 
bbf05f6
 
 
3bf8aaa
bbf05f6
 
894e602
 
3bf8aaa
 
 
 
 
894e602
 
bbf05f6
 
3bf8aaa
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
---
base_model: openai/whisper-small
datasets:
- fleurs
license: apache-2.0
metrics:
- wer
tags:
- generated_from_trainer
model-index:
- name: whisper-small-wolof
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: fleurs
      type: fleurs
      config: wo_sn
      split: test
      args: wo_sn
    metrics:
    - type: wer
      value: 0.9217902350813744
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# whisper-small-wolof

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the fleurs dataset.
It achieves the following results on the evaluation set:
- Loss: 1.8726
- Wer: 0.9218

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer    |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 4.5232        | 0.9790 | 35   | 3.5807          | 1.3809 |
| 3.7127        | 1.9860 | 71   | 2.4567          | 1.1817 |
| 2.2111        | 2.9371 | 105  | 1.8726          | 0.9218 |


### Framework versions

- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1