cilooor commited on
Commit
91d781a
·
verified ·
1 Parent(s): 5427e25

End of training

Browse files
Files changed (2) hide show
  1. README.md +168 -0
  2. adapter_model.bin +3 -0
README.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
4
+ tags:
5
+ - axolotl
6
+ - generated_from_trainer
7
+ model-index:
8
+ - name: c54ac38e-9e9d-4705-841b-218bcf7ee819
9
+ results: []
10
+ ---
11
+
12
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
13
+ should probably proofread and complete it, then remove this comment. -->
14
+
15
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
16
+ <details><summary>See axolotl config</summary>
17
+
18
+ axolotl version: `0.4.1`
19
+ ```yaml
20
+ adapter: lora
21
+ base_model: MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4
22
+ bf16: true
23
+ chat_template: llama3
24
+ data_processes: 24
25
+ dataset_prepared_path: null
26
+ datasets:
27
+ - data_files:
28
+ - 3a5633aeea7fbdc6_train_data.json
29
+ ds_type: json
30
+ format: custom
31
+ path: /workspace/input_data/3a5633aeea7fbdc6_train_data.json
32
+ type:
33
+ field_instruction: original_question
34
+ field_output: response
35
+ format: '{instruction}'
36
+ no_input_format: '{instruction}'
37
+ system_format: '{system}'
38
+ system_prompt: ''
39
+ debug: null
40
+ deepspeed: null
41
+ device_map: auto
42
+ do_eval: true
43
+ early_stopping_patience: 4
44
+ eval_batch_size: 4
45
+ eval_max_new_tokens: 128
46
+ eval_steps: 50
47
+ eval_table_size: null
48
+ evals_per_epoch: null
49
+ flash_attention: true
50
+ fp16: false
51
+ fsdp: null
52
+ fsdp_config: null
53
+ gradient_accumulation_steps: 4
54
+ gradient_checkpointing: true
55
+ group_by_length: true
56
+ hub_model_id: cilooor/c54ac38e-9e9d-4705-841b-218bcf7ee819
57
+ hub_repo: null
58
+ hub_strategy: checkpoint
59
+ hub_token: null
60
+ learning_rate: 9.0e-05
61
+ load_in_4bit: false
62
+ load_in_8bit: false
63
+ local_rank: null
64
+ logging_steps: 1
65
+ lora_alpha: 128
66
+ lora_dropout: 0.04
67
+ lora_fan_in_fan_out: null
68
+ lora_model_dir: null
69
+ lora_r: 64
70
+ lora_target_linear: true
71
+ lr_scheduler: cosine
72
+ lr_scheduler_warmup_steps: 50
73
+ max_grad_norm: 1.0
74
+ max_memory:
75
+ 0: 75GB
76
+ max_steps: 200
77
+ micro_batch_size: 8
78
+ mlflow_experiment_name: /tmp/3a5633aeea7fbdc6_train_data.json
79
+ model_type: AutoModelForCausalLM
80
+ num_epochs: 3
81
+ optim_args:
82
+ adam_beta1: 0.9
83
+ adam_beta2: 0.95
84
+ adam_epsilon: 1e-8
85
+ optimizer: adamw_bnb_8bit
86
+ output_dir: miner_id_24
87
+ pad_to_sequence_len: true
88
+ resume_from_checkpoint: null
89
+ s2_attention: null
90
+ sample_packing: false
91
+ save_steps: 50
92
+ saves_per_epoch: null
93
+ seed: 17333
94
+ sequence_len: 1024
95
+ strict: false
96
+ tf32: true
97
+ tokenizer_type: AutoTokenizer
98
+ total_train_batch_size: 32
99
+ train_batch_size: 8
100
+ train_on_inputs: false
101
+ trust_remote_code: true
102
+ val_set_size: 0.05
103
+ wandb_entity: null
104
+ wandb_mode: online
105
+ wandb_name: 7ccde7ac-5b70-43bf-8171-be1c7873e223
106
+ wandb_project: Gradients-On-Demand
107
+ wandb_run: your_name
108
+ wandb_runid: 7ccde7ac-5b70-43bf-8171-be1c7873e223
109
+ warmup_steps: 10
110
+ weight_decay: 0.0
111
+ xformers_attention: null
112
+
113
+ ```
114
+
115
+ </details><br>
116
+
117
+ # c54ac38e-9e9d-4705-841b-218bcf7ee819
118
+
119
+ This model is a fine-tuned version of [MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4](https://huggingface.co/MNC-Jihun/Mistral-7B-AO-u0.5-b2-ver0.4) on the None dataset.
120
+ It achieves the following results on the evaluation set:
121
+ - Loss: 0.2347
122
+
123
+ ## Model description
124
+
125
+ More information needed
126
+
127
+ ## Intended uses & limitations
128
+
129
+ More information needed
130
+
131
+ ## Training and evaluation data
132
+
133
+ More information needed
134
+
135
+ ## Training procedure
136
+
137
+ ### Training hyperparameters
138
+
139
+ The following hyperparameters were used during training:
140
+ - learning_rate: 9e-05
141
+ - train_batch_size: 8
142
+ - eval_batch_size: 4
143
+ - seed: 17333
144
+ - gradient_accumulation_steps: 4
145
+ - total_train_batch_size: 32
146
+ - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-8
147
+ - lr_scheduler_type: cosine
148
+ - lr_scheduler_warmup_steps: 10
149
+ - training_steps: 200
150
+
151
+ ### Training results
152
+
153
+ | Training Loss | Epoch | Step | Validation Loss |
154
+ |:-------------:|:------:|:----:|:---------------:|
155
+ | 0.4808 | 0.0001 | 1 | 0.7667 |
156
+ | 0.387 | 0.0043 | 50 | 0.3183 |
157
+ | 0.3206 | 0.0085 | 100 | 0.2795 |
158
+ | 0.2631 | 0.0128 | 150 | 0.2465 |
159
+ | 0.3604 | 0.0171 | 200 | 0.2347 |
160
+
161
+
162
+ ### Framework versions
163
+
164
+ - PEFT 0.13.2
165
+ - Transformers 4.46.0
166
+ - Pytorch 2.5.0+cu124
167
+ - Datasets 3.0.1
168
+ - Tokenizers 0.20.1
adapter_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:588b4953ffb64dba513e0f68bb12b2a780f662632936600ca7a6041c69a8ea47
3
+ size 1195555730