from pathlib import Path from diffusers import AutoPipelineForText2Image from transformers import CLIPVisionModelWithProjection from diffusers.utils import load_image from diffusers import LCMScheduler stable_diffusion_id = "circulus/canvers-disney-v3.9.1" ip_adapter_id = "h94/IP-Adapter" ip_adapter_weight_name = "ip-adapter-full-face_sd15.bin" #"ip-adapter-full-face_sd15.bin" # "ip-adapter_sd15.bin" lcm_lora_id = "latent-consistency/lcm-lora-sdv1-5" models_dir = Path("on-canvers-disney-v3.9.1-ov-face") int8_model_path = Path("on-canvers-disney-v3.9.1-ov-face-int8") from optimum.intel import OVConfig, OVQuantizer, OVStableDiffusionPipeline, OVWeightQuantizationConfig from optimum.intel.openvino.configuration import OVQuantizationMethod load_original_pipeline = not all( [ (models_dir / model_name).exists() for model_name in [ "text_encoder.xml", "image_encoder.xml", "unet.xml", "vae_decoder.xml", "vae_encoder.xml", ] ] ) def get_pipeline_components( stable_diffusion_id, ip_adapter_id, ip_adapter_weight_name, lcm_lora_id, ip_adapter_scale=0.65, ): image_encoder = CLIPVisionModelWithProjection.from_pretrained("h94/IP-Adapter", subfolder="models/image_encoder") print(image_encoder) pipeline = AutoPipelineForText2Image.from_pretrained(stable_diffusion_id, image_encoder=image_encoder) pipeline.load_lora_weights(lcm_lora_id) pipeline.fuse_lora() pipeline.load_ip_adapter(ip_adapter_id, subfolder="models", weight_name=ip_adapter_weight_name) pipeline.set_ip_adapter_scale(ip_adapter_scale) scheduler = LCMScheduler.from_pretrained(stable_diffusion_id, subfolder="scheduler") return ( pipeline.tokenizer, pipeline.feature_extractor, scheduler, pipeline.text_encoder, pipeline.image_encoder, pipeline.unet, pipeline.vae, ) if load_original_pipeline: ( tokenizer, feature_extractor, scheduler, text_encoder, image_encoder, unet, vae, ) = get_pipeline_components(stable_diffusion_id, ip_adapter_id, ip_adapter_weight_name, lcm_lora_id) scheduler.save_pretrained(models_dir / "scheduler") else: tokenizer, feature_extractor, scheduler, text_encoder, image_encoder, unet, vae = ( None, None, None, None, None, None, None, ) import openvino as ov import torch import gc def cleanup_torchscript_cache(): """ Helper for removing cached model representation """ torch._C._jit_clear_class_registry() torch.jit._recursive.concrete_type_store = torch.jit._recursive.ConcreteTypeStore() torch.jit._state._clear_class_state() IMAGE_ENCODER_PATH = models_dir / "image_encoder.xml" UNET_PATH = models_dir / "unet.xml" VAE_DECODER_PATH = models_dir / "vae_decoder.xml" VAE_ENCODER_PATH = models_dir / "vae_encoder.xml" TEXT_ENCODER_PATH = models_dir / "text_encoder.xml" if not IMAGE_ENCODER_PATH.exists(): with torch.no_grad(): ov_model = ov.convert_model( image_encoder, example_input=torch.zeros((1, 3, 224, 224)), input=[-1, 3, 224, 224], ) ov.save_model(ov_model, IMAGE_ENCODER_PATH) feature_extractor.save_pretrained(models_dir / "feature_extractor") del ov_model cleanup_torchscript_cache() if not UNET_PATH.exists(): inputs = { "sample": torch.randn((2, 4, 64, 64)), "timestep": torch.tensor(1), "encoder_hidden_states": torch.randn((2, 77, 768)), "added_cond_kwargs": {"image_embeds": torch.ones((2, 1280))}, # 2,1024 } print(unet) with torch.no_grad(): ov_model = ov.convert_model(unet, example_input=inputs) # dictionary with added_cond_kwargs will be decomposed during conversion # in some cases decomposition may lead to losing data type and shape information # We need to recover it manually after the conversion ov_model.inputs[-1].get_node().set_element_type(ov.Type.f32) ov_model.validate_nodes_and_infer_types() ov.save_model(ov_model, UNET_PATH) del ov_model cleanup_torchscript_cache() if not VAE_DECODER_PATH.exists(): class VAEDecoderWrapper(torch.nn.Module): def __init__(self, vae): super().__init__() self.vae = vae def forward(self, latents): return self.vae.decode(latents) vae_decoder = VAEDecoderWrapper(vae) with torch.no_grad(): ov_model = ov.convert_model(vae_decoder, example_input=torch.ones([1, 4, 64, 64])) ov.save_model(ov_model, VAE_DECODER_PATH) del ov_model cleanup_torchscript_cache() del vae_decoder if not VAE_ENCODER_PATH.exists(): class VAEEncoderWrapper(torch.nn.Module): def __init__(self, vae): super().__init__() self.vae = vae def forward(self, image): return self.vae.encode(x=image)["latent_dist"].sample() vae_encoder = VAEEncoderWrapper(vae) vae_encoder.eval() image = torch.zeros((1, 3, 512, 512)) with torch.no_grad(): ov_model = ov.convert_model(vae_encoder, example_input=image) ov.save_model(ov_model, VAE_ENCODER_PATH) del ov_model cleanup_torchscript_cache() if not TEXT_ENCODER_PATH.exists(): with torch.no_grad(): ov_model = ov.convert_model( text_encoder, example_input=torch.ones([1, 77], dtype=torch.long), input=[ (1, 77), ], ) ov.save_model(ov_model, TEXT_ENCODER_PATH) del ov_model cleanup_torchscript_cache() tokenizer.save_pretrained(models_dir / "tokenizer") import inspect from typing import List, Optional, Union, Dict, Tuple import numpy as np from pathlib import Path from diffusers import AutoPipelineForText2Image from transformers import CLIPVisionModelWithProjection from diffusers.utils import load_image from diffusers import LCMScheduler import PIL import cv2 import torch import openvino as ov from transformers import CLIPTokenizer, CLIPImageProcessor from diffusers import DiffusionPipeline from diffusers.pipelines.stable_diffusion.pipeline_output import ( StableDiffusionPipelineOutput, ) from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from resampler import Resampler def scale_fit_to_window(dst_width: int, dst_height: int, image_width: int, image_height: int): """ Preprocessing helper function for calculating image size for resize with peserving original aspect ratio and fitting image to specific window size Parameters: dst_width (int): destination window width dst_height (int): destination window height image_width (int): source image width image_height (int): source image height Returns: result_width (int): calculated width for resize result_height (int): calculated height for resize """ im_scale = min(dst_height / image_height, dst_width / image_width) return int(im_scale * image_width), int(im_scale * image_height) def randn_tensor( shape: Union[Tuple, List], generator: Optional[Union[List["torch.Generator"], "torch.Generator"]] = None, dtype: Optional["torch.dtype"] = None, ): """A helper function to create random tensors on the desired `device` with the desired `dtype`. When passing a list of generators, you can seed each batch size individually. """ batch_size = shape[0] rand_device = torch.device("cpu") # make sure generator list of length 1 is treated like a non-list if isinstance(generator, list) and len(generator) == 1: generator = generator[0] if isinstance(generator, list): shape = (1,) + shape[1:] latents = [torch.randn(shape, generator=generator[i], device=rand_device, dtype=dtype) for i in range(batch_size)] latents = torch.cat(latents, dim=0) else: latents = torch.randn(shape, generator=generator, device=rand_device, dtype=dtype) return latents def preprocess(image: PIL.Image.Image, height, width): """ Image preprocessing function. Takes image in PIL.Image format, resizes it to keep aspect ration and fits to model input window 512x512, then converts it to np.ndarray and adds padding with zeros on right or bottom side of image (depends from aspect ratio), after that converts data to float32 data type and change range of values from [0, 255] to [-1, 1], finally, converts data layout from planar NHWC to NCHW. The function returns preprocessed input tensor and padding size, which can be used in postprocessing. Parameters: image (PIL.Image.Image): input image Returns: image (np.ndarray): preprocessed image tensor meta (Dict): dictionary with preprocessing metadata info """ src_width, src_height = image.size dst_width, dst_height = scale_fit_to_window(height, width, src_width, src_height) image = np.array(image.resize((dst_width, dst_height), resample=PIL.Image.Resampling.LANCZOS))[None, :] print(image.shape) pad_width = width - dst_width pad_height = height - dst_height pad = ((0, 0), (0, pad_height), (0, pad_width), (0, 0)) image = np.pad(image, pad, mode="constant") image = image.astype(np.float32) / 255.0 #image = image.astype(np.float16) / 255.0 image = 2.0 * image - 1.0 image = image.transpose(0, 3, 1, 2) print(image.shape) return image, {"padding": pad, "src_width": src_width, "src_height": src_height} class OVStableDiffusionPipeline(DiffusionPipeline): def __init__( self, vae_decoder: ov.Model, text_encoder: ov.Model, tokenizer: CLIPTokenizer, unet: ov.Model, scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], image_encoder: ov.Model, feature_extractor: CLIPImageProcessor, vae_encoder: ov.Model, ): """ Pipeline for text-to-image generation using Stable Diffusion and IP-Adapter with OpenVINO Parameters: vae_decoder (ov.Model): Variational Auto-Encoder (VAE) Model to decode images to and from latent representations. text_encoder (ov.Model):CLIPImageProcessor Frozen text-encoder. Stable Diffusion uses the text portion of [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically the clip-vit-large-patch14(https://huggingface.co/openai/clip-vit-large-patch14) variant. tokenizer (CLIPTokenizer): Tokenizer of class CLIPTokenizer(https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). unet (ov.Model): Conditional U-Net architecture to denoise the encoded image latents. scheduler (SchedulerMixin): A scheduler to be used in combination with unet to denoise the encoded image latents image_encoder (ov.Model): IP-Adapter image encoder for embedding input image as input prompt for generation feature_extractor : """ super().__init__() self.scheduler = scheduler self.vae_decoder = vae_decoder self.image_encoder = image_encoder self.text_encoder = text_encoder self.unet = unet self.height = 512 self.width = 512 self.vae_scale_factor = 8 self.tokenizer = tokenizer self.vae_encoder = vae_encoder self.feature_extractor = feature_extractor self.register_to_config(unet=unet) # config def __call__( self, prompt: Union[str, List[str]], ip_adapter_image: PIL.Image.Image, image: PIL.Image.Image = None, num_inference_steps: Optional[int] = 4, negative_prompt: Union[str, List[str]] = None, guidance_scale: Optional[float] = 0.5, eta: Optional[float] = 0.0, output_type: Optional[str] = "pil", height: Optional[int] = None, width: Optional[int] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, strength: float = 1.0, **kwargs, ): """ Function invoked when calling the pipeline for generation. Parameters: prompt (str or List[str]): The prompt or prompts to guide the image generation. image (PIL.Image.Image, *optional*, None): Intinal image for generation. num_inference_steps (int, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. negative_prompt (str or List[str]):https://user-images.githubusercontent.com/29454499/258651862-28b63016-c5ff-4263-9da8-73ca31100165.jpeg The negative prompt or prompts to guide the image generation. guidance_scale (float, *optional*, defaults to 7.5): Guidance scale as defined in Classifier-Free Diffusion Guidance(https://arxiv.org/abs/2207.12598). guidance_scale is defined as `w` of equation 2. Higher guidance scale encourages to generate images that are closely linked to the text prompt, usually at the expense of lower image quality. eta (float, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [DDIMScheduler], will be ignored for others. output_type (`str`, *optional*, defaults to "pil"): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): PIL.Image.Image or np.array. height (int, *optional*, 512): Generated image height width (int, *optional*, 512): Generated image width generator (`torch.Generator` or `List[torch.Generator]`, *optional*): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor is generated by sampling using the supplied random `generator`. Returns: Dictionary with keys: sample - the last generated image PIL.Image.Image or np.arrayhttps://huggingface.co/latent-consistency/lcm-lora-sdv1-5 iterations - *optional* (if gif=True) images for all diffusion steps, List of PIL.Image.Image or np.array. """ do_classifier_free_guidance = guidance_scale > 1.0 # get prompt text embeddings text_embeddings = self._encode_prompt( prompt, do_classifier_free_guidance=do_classifier_free_guidance, negative_prompt=negative_prompt, ) # get ip-adapter image embeddings image_embeds, negative_image_embeds = self.encode_image(ip_adapter_image) if do_classifier_free_guidance: image_embeds = np.concatenate([negative_image_embeds, image_embeds]) # set timesteps accepts_offset = "offset" in set(inspect.signature(self.scheduler.set_timesteps).parameters.keys()) extra_set_kwargs = {} if accepts_offset: extra_set_kwargs["offset"] = 1 self.scheduler.set_timesteps(num_inference_steps, **extra_set_kwargs) timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength) latent_timestep = timesteps[:1] print(num_inference_steps,timesteps) # get the initial random noise unless the user supplied it latents, meta = self.prepare_latents( 1, 4, height or self.height, width or self.width, generator=generator, latents=latents, image=image, latent_timestep=latent_timestep, ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) extra_step_kwargs = {} if accepts_eta: extra_step_kwargs["eta"] = eta for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if you are doing classifier free guidance latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_pred = self.unet([latent_model_input, t, text_embeddings, image_embeds])[0] # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred[0], noise_pred[1] noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs, )["prev_sample"].numpy() # scale and decode the image latents with vae image = self.vae_decoder(latents * (1 / 0.18215))[0] image = self.postprocess_image(image, meta, output_type) return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=False) def _encode_prompt( self, prompt: Union[str, List[str]], num_images_per_prompt: int = 1, do_classifier_free_guidance: bool = True, negative_prompt: Union[str, List[str]] = None, ): """ Encodes the prompt into text encoder hidden states. Parameters: prompt (str or list(str)): prompt to be encoded num_images_per_prompt (int): number of images that should be generated per prompt do_classifier_free_guidance (bool): whether to use classifier free guidance or not negative_prompt (str or list(str)): negative prompt to be encoded. Returns: text_embeddings (np.ndarray): text encoder hidden states """ batch_size = len(prompt) if isinstance(prompt, list) else 1 # tokenize input prompts text_inputs = self.tokenizer( prompt, padding="max_length", max_length=self.tokenizer.model_max_length, truncation=True, return_tensors="np", ) text_input_ids = text_inputs.input_ids text_embeddings = self.text_encoder(text_input_ids)[0] # duplicate text embeddings for each generation per prompt if num_images_per_prompt != 1: bs_embed, seq_len, _ = text_embeddings.shape text_embeddings = np.tile(text_embeddings, (1, num_images_per_prompt, 1)) text_embeddings = np.reshape(text_embeddings, (bs_embed * num_images_per_prompt, seq_len, -1)) # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: uncond_tokens: List[str] max_length = text_input_ids.shape[-1] if negative_prompt is None: uncond_tokens = [""] * batch_size elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] else: uncond_tokens = negative_prompt uncond_input = self.tokenizer( uncond_tokens, padding="max_length", max_length=max_length, truncation=True, return_tensors="np", ) uncond_embeddings = self.text_encoder(uncond_input.input_ids)[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method seq_len = uncond_embeddings.shape[1] uncond_embeddings = np.tile(uncond_embeddings, (1, num_images_per_prompt, 1)) uncond_embeddings = np.reshape(uncond_embeddings, (batch_size * num_images_per_prompt, seq_len, -1)) # For classifier-free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) return text_embeddings def prepare_latents( self, batch_size, num_channels_latents, height, width, dtype=torch.float16, generator=None, latents=None, image=None, latent_timestep=None, ): shape = ( batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor, ) if isinstance(generator, list) and len(generator) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) if latents is None: latents = randn_tensor(shape, generator=generator, dtype=dtype) if image is None: # scale the initial noise by the standard deviation required by the scheduler latents = latents * self.scheduler.init_noise_sigma return latents.numpy(), {} input_image, meta = preprocess(image, height, width) print(input_image.shape) image_latents = self.vae_encoder(input_image)[0] image_latents = image_latents * 0.18215 latents = self.scheduler.add_noise(torch.from_numpy(image_latents), latents, latent_timestep).numpy() return latents, meta def postprocess_image(self, image: np.ndarray, meta: Dict, output_type: str = "pil"): """ Postprocessing for decoded image. Takes generated image decoded by VAE decoder, unpad it to initial image size (if required), normalize and convert to [0, 255] pixels range. Optionally, converts it from np.ndarray to PIL.Image format Parameters: image (np.ndarray): Generated image meta (Dict): Metadata obtained on the latents preparing step can be empty output_type (str, *optional*, pil): Output format for result, can be pil or numpy Returns: image (List of np.ndarray or PIL.Image.Image): Post-processed images """ if "padding" in meta: pad = meta["padding"] (_, end_h), (_, end_w) = pad[1:3] h, w = image.shape[2:] unpad_h = h - end_h unpad_w = w - end_w image = image[:, :, :unpad_h, :unpad_w] image = np.clip(image / 2 + 0.5, 0, 1) image = np.transpose(image, (0, 2, 3, 1)) # 9. Convert to PIL if output_type == "pil": image = self.numpy_to_pil(image) if "src_height" in meta: orig_height, orig_width = meta["src_height"], meta["src_width"] image = [img.resize((orig_width, orig_height), PIL.Image.Resampling.LANCZOS) for img in image] else: if "src_height" in meta: orig_height, orig_width = meta["src_height"], meta["src_width"] image = [cv2.resize(img, (orig_width, orig_width)) for img in image] return image def encode_image(self, image, num_images_per_prompt=1): if not isinstance(image, torch.Tensor): image = self.feature_extractor(image, return_tensors="pt").pixel_values image_embeds = self.image_encoder(image)[0] """ print(1,image_embeds) image_proj_model = Resampler( dim=1024, depth=2, dim_head=64, heads=16, num_queries=8, embedding_dim=1280, output_dim=1280, ff_mult=2, max_seq_len=257, apply_pos_emb=True, num_latents_mean_pooled=4, ) image_embeds = image_proj_model(image_embeds) print(2,image_embeds) """ if num_images_per_prompt > 1: image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0) uncond_image_embeds = np.zeros(image_embeds.shape) return image_embeds, uncond_image_embeds def get_timesteps(self, num_inference_steps: int, strength: float): """ Helper function for getting scheduler timesteps for generation In case of image-to-image generation, it updates number of steps according to strength Parameters: num_inference_steps (int): number of inference steps for generation strength (float): value between 0.0 and 1.0, that controls the amount of noise that is added to the input image. Values that approach 1.0 allow for lots of variations but will also produce images that are not semantically consistent with the input. """ # get the original timestep using init_timestep init_timestep = min(int(num_inference_steps * strength), num_inference_steps) t_start = max(num_inference_steps - init_timestep, 0) timesteps = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start core = ov.Core() device = "GPU" from transformers import AutoTokenizer from PIL import Image ov_config = {"INFERENCE_PRECISION_HINT": "f16"} vae_decoder = core.compile_model(VAE_DECODER_PATH, device, ov_config) vae_encoder = core.compile_model(VAE_ENCODER_PATH, device, ov_config) text_encoder = core.compile_model(TEXT_ENCODER_PATH, device ) image_encoder = core.compile_model(IMAGE_ENCODER_PATH, device) unet = core.compile_model(UNET_PATH, device) scheduler = LCMScheduler.from_pretrained(models_dir / "scheduler") tokenizer = AutoTokenizer.from_pretrained(models_dir / "tokenizer") feature_extractor = CLIPImageProcessor.from_pretrained(models_dir / "feature_extractor") ov_pipe = OVStableDiffusionPipeline( vae_decoder, text_encoder, tokenizer, unet, scheduler, image_encoder, feature_extractor, vae_encoder, #safety_checker = None ) """ import datasets DATASET_NAME = "jxie/coco_captions" dataset = datasets.load_dataset("jxie/coco_captions", split="train", streaming=True).shuffle(seed=42) def preprocess_fn(example): return {"prompt": example["caption"]} NUM_SAMPLES = 200 dataset = dataset.take(NUM_SAMPLES) calibration_dataset = dataset.map(lambda x: preprocess_fn(x), remove_columns=dataset.column_names) int8_pipe = None import nncf import datasets from tqdm import tqdm from transformers import set_seed from typing import Any, Dict, List set_seed(1) class CompiledModelDecorator(ov.CompiledModel): def __init__(self, compiled_model, prob: float, data_cache: List[Any] = None): super().__init__(compiled_model) self.data_cache = data_cache if data_cache else [] self.prob = np.clip(prob, 0, 1) def __call__(self, *args, **kwargs): if np.random.rand() >= self.prob: self.data_cache.append(*args) return super().__call__(*args, **kwargs) from diffusers.utils import load_image def collect_calibration_data(pipeline: OVStableDiffusionPipeline, subset_size: int) -> List[Dict]: original_unet = pipeline.unet pipeline.unet = CompiledModelDecorator(original_unet, prob=0.3) #google-research-datasets/conceptual_captions dataset = datasets.load_dataset("jxie/coco_captions", split="train", streaming=True).shuffle(seed=42) pipeline.set_progress_bar_config(disable=True) #safety_checker = pipeline.safety_checker #pipeline.safety_checker = None # Run inference for data collection pbar = tqdm(total=subset_size) diff = 0 for batch in dataset: prompt = batch["caption"] image = load_image(batch["image"]) if len(prompt) > tokenizer.model_max_length: continue _ = pipeline( prompt, ip_adapter_image = image, num_inference_steps=4, guidance_scale=1, #guidance_scale=8.0, #lcm_origin_steps=50, output_type="pil", height=512, width=512, ) collected_subset_size = len(pipeline.unet.data_cache) if collected_subset_size >= subset_size: pbar.update(subset_size - pbar.n) break pbar.update(collected_subset_size - diff) diff = collected_subset_size calibration_dataset = pipeline.unet.data_cache pipeline.set_progress_bar_config(disable=False) pipeline.unet = original_unet #pipeline.safety_checker = safety_checker return calibration_dataset UNET_INT8_PATH = models_dir / "unet_int8.xml" if not UNET_INT8_PATH.exists(): subset_size = 200 unet_calibration_data = collect_calibration_data(ov_pipe, subset_size=subset_size) import nncf from nncf.scopes import IgnoredScope if UNET_INT8_PATH.exists(): print("Loading quantized model") quantized_unet = core.read_model(UNET_INT8_PATH) else: unet = core.read_model(UNET_PATH) quantized_unet = nncf.quantize( model=unet, subset_size=subset_size, calibration_dataset=nncf.Dataset(unet_calibration_data), model_type=nncf.ModelType.TRANSFORMER, advanced_parameters=nncf.AdvancedQuantizationParameters( disable_bias_correction=True ) ) ov.save_model(quantized_unet, UNET_INT8_PATH) """