--- library_name: transformers license: mit base_model: neuralmind/bert-base-portuguese-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: e3_lr2e-05 results: [] --- # e3_lr2e-05 This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0753 - Precision: 0.9611 - Recall: 0.9778 - F1: 0.9694 - Accuracy: 0.9817 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.4195 | 0.2564 | 50 | 0.2315 | 0.8642 | 0.8460 | 0.8550 | 0.9499 | | 0.2396 | 0.5128 | 100 | 0.1778 | 0.8971 | 0.8970 | 0.8970 | 0.9517 | | 0.1717 | 0.7692 | 150 | 0.1330 | 0.9033 | 0.9323 | 0.9176 | 0.9639 | | 0.1249 | 1.0256 | 200 | 0.1090 | 0.9369 | 0.9554 | 0.9460 | 0.9728 | | 0.0929 | 1.2821 | 250 | 0.1066 | 0.9397 | 0.9630 | 0.9512 | 0.9739 | | 0.0954 | 1.5385 | 300 | 0.0831 | 0.9498 | 0.9670 | 0.9583 | 0.9788 | | 0.0858 | 1.7949 | 350 | 0.0844 | 0.9459 | 0.9727 | 0.9591 | 0.9776 | | 0.0715 | 2.0513 | 400 | 0.0868 | 0.9512 | 0.9766 | 0.9637 | 0.9796 | | 0.056 | 2.3077 | 450 | 0.0789 | 0.9616 | 0.9774 | 0.9695 | 0.9818 | | 0.0592 | 2.5641 | 500 | 0.0768 | 0.9614 | 0.9783 | 0.9698 | 0.9817 | | 0.0607 | 2.8205 | 550 | 0.0753 | 0.9611 | 0.9778 | 0.9694 | 0.9817 | ### Framework versions - Transformers 4.45.0 - Pytorch 2.4.1+cu121 - Datasets 3.0.0 - Tokenizers 0.20.0