lat_mean = 39.95177162396873 lat_std = 0.0006333008487451197 lon_mean = -75.19143495078883 lon_std = 0.0006184167829766685 ``` # TO RUN: from huggingface_hub import hf_hub_download import torchvision.models as models import torch import torch.nn as nn # Specify the repository and the filename of the model you want to load repo_id = "cis-5190-final-fall24/ImageToGPSproject_model" # Replace with your repo name filename = "final_model.pth" class ResNetGPSModel(nn.Module): def __init__(self): super(ResNetGPSModel, self).__init__() self.resnet = models.resnet101() # Updated for PyTorch >=0.13 self.resnet.fc = nn.Sequential( nn.Dropout(0.4), # Dropout for regularization nn.Linear(self.resnet.fc.in_features, 2) # Latitude and Longitude ) def forward(self, x): return self.resnet(x) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = ResNetGPSModel().to(device) model_path = hf_hub_download(repo_id=repo_id, filename=filename) # Load the model using torch state_dict = torch.load(model_path) model.load_state_dict(state_dict) model.eval() # Set the model to evaluation mode ```