Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
datasets:
|
3 |
+
- cis519-Image2GPS/gps_images_dataset
|
4 |
+
base_model:
|
5 |
+
- cis519-Image2GPS/ImageToGPSproject_resnet18
|
6 |
+
---
|
7 |
+
- lat mean = 39.95169318421053
|
8 |
+
- lat std = 0.0007139636196696079
|
9 |
+
- lon mean = -75.19131129824562
|
10 |
+
- lon std = 0.0006948352800088026
|
11 |
+
|
12 |
+
---
|
13 |
+
To load & evaluate our model:
|
14 |
+
``` python
|
15 |
+
!pip install geopy > delete.txt
|
16 |
+
!pip install datasets > delete.txt
|
17 |
+
!pip install torch torchvision datasets > delete.txt
|
18 |
+
!pip install huggingface_hub > delete.txt
|
19 |
+
!rm delete.txt
|
20 |
+
!pip install transformers
|
21 |
+
!pip install geopy
|
22 |
+
|
23 |
+
import getpass
|
24 |
+
from huggingface_hub import notebook_login
|
25 |
+
# Securely input the Hugging Face token
|
26 |
+
token = getpass.getpass("Enter your Hugging Face token: ")
|
27 |
+
# Log in to Hugging Face Hub
|
28 |
+
notebook_login(token)
|
29 |
+
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
import torch
|
32 |
+
from huggingface_hub import HfApi, HfFolder, Repository
|
33 |
+
# Specify the repository and the filename of the model you want to load
|
34 |
+
repo_id = "cis519-Image2GPS/ImageToGPSproject_resnet18_layer" # Replace with your repo name
|
35 |
+
filename = "resnet_gps_regressor_complete.pth"
|
36 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
|
37 |
+
# Load the model using torch
|
38 |
+
model_test = torch.load(model_path)
|
39 |
+
model_test.eval() # Set the model to evaluation mode
|
40 |
+
|
41 |
+
from datasets import load_dataset, Image
|
42 |
+
dataset_test = load_dataset("gydou/released_img", split="train")
|
43 |
+
|
44 |
+
import torchvision.transforms as transforms
|
45 |
+
import numpy as np
|
46 |
+
from geopy.distance import geodesic
|
47 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
48 |
+
transform = transforms.Compose([
|
49 |
+
transforms.RandomResizedCrop(224), # Random crop and resize to 224x224
|
50 |
+
transforms.RandomHorizontalFlip(), # Random horizontal flip
|
51 |
+
# transforms.RandomRotation(degrees=15), # Random rotation between -15 and 15 degrees
|
52 |
+
transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1), # Random color jitter
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
55 |
+
std=[0.229, 0.224, 0.225])
|
56 |
+
])
|
57 |
+
inference_transform = transforms.Compose([
|
58 |
+
transforms.Resize((224, 224)),
|
59 |
+
transforms.ToTensor(),
|
60 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
61 |
+
std=[0.229, 0.224, 0.225])
|
62 |
+
])
|
63 |
+
with torch.no_grad():
|
64 |
+
for data in dataset_test:
|
65 |
+
image = inference_transform(data["image"]).unsqueeze(0).to(device)
|
66 |
+
outputs = model_test(image)
|
67 |
+
# print("Predicted latitude & longitude:", outputs.cpu().numpy())
|
68 |
+
lat_mean = 39.95169318421053
|
69 |
+
lat_std = 0.0007139636196696079
|
70 |
+
lon_mean = -75.19131129824562
|
71 |
+
lon_std = 0.0006948352800088026
|
72 |
+
all_distances = []
|
73 |
+
model_test.eval()
|
74 |
+
with torch.no_grad():
|
75 |
+
for data in dataset_test:
|
76 |
+
image = transform(data["image"]).unsqueeze(0).to(device)
|
77 |
+
outputs = model_test(image).cpu().numpy()
|
78 |
+
preds_denorm = outputs * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])
|
79 |
+
actual = [data["Latitude"], data["Longitude"]]
|
80 |
+
distance = geodesic(actual, preds_denorm[0]).meters
|
81 |
+
all_distances.append(distance)
|
82 |
+
mean_error = np.mean(all_distances)
|
83 |
+
rmse_error = np.sqrt(np.mean(np.square(all_distances)))
|
84 |
+
print('mean_error: ', mean_error)
|
85 |
+
print('rmse_error: ', rmse_error)
|
86 |
+
|
87 |
+
```
|