ezelpub commited on
Commit
7033fbb
·
verified ·
1 Parent(s): 9754f61

Updated the Efficient Net model

Browse files
Files changed (1) hide show
  1. README.md +55 -9
README.md CHANGED
@@ -1,9 +1,55 @@
1
- ---
2
- tags:
3
- - model_hub_mixin
4
- - pytorch_model_hub_mixin
5
- ---
6
-
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Image to GPS Model: DINO-ResNet Fusion
2
+
3
+ ## Training Data Statistics
4
+ The following mean and standard deviation values were used to normalize the GPS coordinates:
5
+
6
+ - **Latitude Mean**: {lat_mean:.6f}
7
+ - **Latitude Std**: {lat_std:.6f}
8
+ - **Longitude Mean**: {lon_mean:.6f}
9
+ - **Longitude Std**: {lon_std:.6f}
10
+
11
+ ## How to use the model
12
+
13
+ Please include the definition of the model first before loading the checkpoint:
14
+
15
+ ```python
16
+ # Import all the dependencies
17
+ import torch
18
+ import torch.nn as nn
19
+ import torchvision.models as models
20
+ import torchvision.transforms as transforms
21
+ from torch.utils.data import DataLoader, Dataset
22
+ from transformers import AutoImageProcessor, AutoModelForImageClassification, AutoModel
23
+ from huggingface_hub import PyTorchModelHubMixin
24
+ from PIL import Image
25
+ import os
26
+ import numpy as np
27
+
28
+ class EfficientNetGPSModel(nn.Module):
29
+ def __init__(self, eff_name="efficientnet_b0", num_outputs=2):
30
+ super(EfficientNetGPSModel, self).__init__()
31
+
32
+ # Load the EfficientNet backbone
33
+ self.efficientnet = getattr(models, eff_name)(pretrained=True)
34
+
35
+ # Replace the classifier head while keeping the overall structure simple
36
+ in_features = self.efficientnet.classifier[1].in_features
37
+ self.efficientnet.classifier = nn.Sequential(
38
+ nn.Linear(in_features, num_outputs) # Directly map to GPS coordinates
39
+ )
40
+
41
+ def forward(self, x):
42
+ return self.efficientnet(x)
43
+
44
+ def save_model(self, save_path):
45
+ self.save_pretrained(save_path)
46
+
47
+ def push_model(self, repo_name):
48
+ self.push_to_hub(repo_name)
49
+ ```
50
+
51
+ Then you can download the model from HF by running, and this will also load the checkpoint automatically:
52
+
53
+ ```python
54
+ model = EfficientNetGPSModel.from_pretrained("cis519/efficient-net-gps")
55
+ ```