File size: 7,761 Bytes
eaa16ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# Image to GPS Project - ConvNext, MobileNet and EfficientNet Ensemble
```bash
## Training Data Statistics
lat_mean = 39.951537011424264
lat_std = 0.0006940325318781937
lon_mean = -75.19152009539549
lon_std = 0.0007607716964655242
```

## How to Load the Model and Perform Inference
```bash
# install dependencies
pip install geopy datasets torch torchvision huggingface_hub
# import packages
import numpy as np
from geopy.distance import geodesic
import torch
from torch.utils.data import DataLoader, Dataset
from torchvision import transforms
import torch.nn as nn
from torchvision.models import mobilenet_v2, MobileNet_V2_Weights, convnext_tiny, ConvNeXt_Tiny_Weights, efficientnet_b0, EfficientNet_B0_Weights
from datasets import load_dataset
from huggingface_hub import hf_hub_download
# load the model 
repo_id = "cis519projectA/Ensemble_ConvNeXt_MobileNet_EfficientNet"
filename = "ensemble_triple.pth"
model_path = hf_hub_download(repo_id=repo_id, filename=filename)
# define models
class CustomEfficientNetModel(nn.Module):
    def __init__(self, weights=EfficientNet_B0_Weights.DEFAULT, num_classes=2):
        super().__init__()
        self.efficientnet = efficientnet_b0(weights=weights)
        in_features = self.efficientnet.classifier[1].in_features
        self.efficientnet.classifier = nn.Sequential(
            nn.Linear(in_features, 512),
            nn.ReLU(),
            nn.Dropout(p=0.3),
            nn.Linear(512, num_classes)
        )
        for param in self.efficientnet.features[:3].parameters():
            param.requires_grad = False

    def forward(self, x):
        return self.efficientnet(x)

class CustomConvNeXtModel(nn.Module):
    def __init__(self, weights=ConvNeXt_Tiny_Weights.DEFAULT, num_classes=2):
        super().__init__()
        self.convnext = convnext_tiny(weights=weights)
        in_features = self.convnext.classifier[2].in_features
        self.convnext.classifier = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Flatten(),
            nn.Linear(in_features, 512),
            nn.BatchNorm1d(512),
            nn.ReLU(),
            nn.Dropout(p=0.3),
            nn.Linear(512, num_classes)
        )
        for param in self.convnext.features[:4].parameters():
            param.requires_grad = False
    def forward(self, x):
        return self.convnext(x)

class CustomMobileNetModel(nn.Module):
    def __init__(self, weights=MobileNet_V2_Weights.DEFAULT, num_classes=2):
        super().__init__()
        self.mobilenet = mobilenet_v2(weights=weights)
        in_features = self.mobilenet.classifier[1].in_features
        self.mobilenet.classifier = nn.Sequential(
            nn.Linear(in_features, 1024),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(1024, 512),
            nn.ReLU(),
            nn.Dropout(p=0.5),
            nn.Linear(512, num_classes)
        )
        for param in self.mobilenet.features[:5].parameters():
            param.requires_grad = False

    def forward(self, x):
        return self.mobilenet(x)

class EnsembleModel(nn.Module):
    def __init__(self, convnext_model, mobilenet_model, efficientnet_model, num_classes=2):
        super().__init__()
        self.convnext = convnext_model
        self.mobilenet = mobilenet_model
        self.efficientnet = efficientnet_model
        self.weight_convnext = nn.Parameter(torch.tensor(1.0))
        self.weight_mobilenet = nn.Parameter(torch.tensor(1.0))
        self.weight_efficientnet = nn.Parameter(torch.tensor(1.0))
        self.fc = nn.Sequential(
            nn.Linear(num_classes * 3, 512),
            nn.ReLU(),
            nn.Dropout(p=0.3),
            nn.Linear(512, num_classes)
        )
    def forward(self, x):
        convnext_out = self.convnext(x)
        mobilenet_out = self.mobilenet(x)
        efficientnet_out = self.efficientnet(x)
        weights = torch.softmax(torch.stack([self.weight_convnext, self.weight_mobilenet, self.weight_efficientnet]), dim=0)
        combined = (weights[0] * convnext_out +
                    weights[1] * mobilenet_out +
                    weights[2] * efficientnet_out)
        output = self.fc(torch.cat((convnext_out, mobilenet_out, efficientnet_out), dim=1))
        return output

convnext_model = CustomConvNeXtModel(weights=ConvNeXt_Tiny_Weights.DEFAULT, num_classes=2)
mobilenet_model = CustomMobileNetModel(weights=MobileNet_V2_Weights.DEFAULT, num_classes=2)
efficientnet_model = CustomEfficientNetModel(weights=EfficientNet_B0_Weights.DEFAULT, num_classes=2)
ensemble_model = EnsembleModel(convnext_model, mobilenet_model, efficientnet_model, num_classes=2).to(device)
# load the model weights
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
state_dict = torch.load(model_path, map_location=device)
ensemble_model.load_state_dict(state_dict)
ensemble_model.to(device)
ensemble_model.eval()
# load the dataset
dataset_test = load_dataset("gydou/released_img", split="train")
# define transformers
inference_transform = transforms.Compose([
    transforms.Resize((224, 224)),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
# Parameters for denormalization
lat_mean = 39.951537011424264
lat_std = 0.0006940325318781937
lon_mean = -75.19152009539549
lon_std = 0.0007607716964655242
class GPSImageDataset(Dataset):
    def __init__(self, hf_dataset, transform=None, lat_mean=None, lat_std=None, lon_mean=None, lon_std=None):
        self.hf_dataset = hf_dataset
        self.transform = transform
        self.latitude_mean = lat_mean
        self.latitude_std = lat_std
        self.longitude_mean = lon_mean
        self.longitude_std = lon_std
    def __len__(self):
        return len(self.hf_dataset)
    def __getitem__(self, idx):
        example = self.hf_dataset[idx]
        image = example['image']
        latitude = example['Latitude']
        longitude = example['Longitude']
        if self.transform:
            image = self.transform(image)
        latitude = (latitude - self.latitude_mean) / self.latitude_std
        longitude = (longitude - self.longitude_mean) / self.longitude_std
        gps_coords = torch.tensor([latitude, longitude], dtype=torch.float32)
        return image, gps_coords
# transform test data
test_dataset = GPSImageDataset(
    hf_dataset=dataset_test,
    transform=inference_transform,
    lat_mean=lat_mean,
    lat_std=lat_std,
    lon_mean=lon_mean,
    lon_std=lon_std
)
test_dataloader = DataLoader(test_dataset, batch_size=32, shuffle=False, num_workers=4)
# evaluate
def evaluate_model_single_batch(model, dataloader, lat_mean, lat_std, lon_mean, lon_std):
    all_distances = []
    model.eval()
    with torch.no_grad():
        for batch_idx, (images, gps_coords) in enumerate(dataloader):            
            images, gps_coords = images.to(device), gps_coords.to(device)
            outputs = model(images)
            preds_denorm = outputs.cpu().numpy() * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])
            actuals_denorm = gps_coords.cpu().numpy() * np.array([lat_std, lon_std]) + np.array([lat_mean, lon_mean])
            for pred, actual in zip(preds_denorm, actuals_denorm):
                distance = geodesic((actual[0], actual[1]), (pred[0], pred[1])).meters
                all_distances.append(distance)
            break
    mean_error = np.mean(all_distances)
    rmse_error = np.sqrt(np.mean(np.square(all_distances)))
    return mean_error, rmse_error
# Evaluate using only one batch
mean_error, rmse_error = evaluate_model_single_batch(
    ensemble_model, test_dataloader, lat_mean, lat_std, lon_mean, lon_std
)
print(f"Mean Error (meters): {mean_error:.2f}, RMSE (meters): {rmse_error:.2f}")
```