arianpasquali
commited on
Commit
·
a999ecb
1
Parent(s):
b9f9177
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_type: "text-classification"
|
3 |
+
|
4 |
+
widget:
|
5 |
+
- text: "this is a lovely message"
|
6 |
+
example_title: "Example 1"
|
7 |
+
multi_class: false
|
8 |
+
- text: "you are an idiot and you and your family should go back to your country"
|
9 |
+
example_title: "Example 2"
|
10 |
+
multi_class: false
|
11 |
+
|
12 |
+
|
13 |
+
language:
|
14 |
+
- en
|
15 |
+
- nl
|
16 |
+
- fr
|
17 |
+
- pt
|
18 |
+
- it
|
19 |
+
- es
|
20 |
+
- de
|
21 |
+
- da
|
22 |
+
- pl
|
23 |
+
- af
|
24 |
+
|
25 |
+
datasets:
|
26 |
+
- jigsaw_toxicity_pred
|
27 |
+
metrics:
|
28 |
+
- F1 Accuracy
|
29 |
+
---
|
30 |
+
|
31 |
+
# citizenlab/distilbert-base-multilingual-cased-toxicity
|
32 |
+
|
33 |
+
This is multilingual Distil-Bert model sequence classifier trained based on [JIGSAW Toxic Comment Classification Challenge](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge) dataset.
|
34 |
+
|
35 |
+
## How to use it
|
36 |
+
|
37 |
+
```python
|
38 |
+
from transformers import pipeline
|
39 |
+
|
40 |
+
model_path = "citizenlab/distilbert-base-multilingual-cased-toxicity"
|
41 |
+
|
42 |
+
topic_classifier = pipeline("text-classification", model=model_path, tokenizer=model_path)
|
43 |
+
topic_classifier("this is a lovely message")
|
44 |
+
> [{'label': 'not_toxic', 'score': 0.9954179525375366}]
|
45 |
+
|
46 |
+
topic_classifier("you are an idiot and you and your family should go back to your country")
|
47 |
+
> [{'label': 'toxic', 'score': 0.9948776960372925}]
|
48 |
+
|
49 |
+
```
|
50 |
+
|
51 |
+
## Evaluation
|
52 |
+
|
53 |
+
### Accuracy
|
54 |
+
|
55 |
+
```
|
56 |
+
Accuracy Score = 0.9425
|
57 |
+
F1 Score (Micro) = 0.9450549450549449
|
58 |
+
F1 Score (Macro) = 0.8491432341169309
|
59 |
+
```
|