--- license: apache-2.0 base_model: openai/whisper-tiny tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: Whisper Tiny-Handy-Pretty - ckandemir results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: PolyAI/minds14 type: PolyAI/minds14 config: en-US split: train[450:] args: en-US metrics: - name: Wer type: wer value: 0.3116883116883117 --- # Whisper Tiny-Handy-Pretty - ckandemir This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the PolyAI/minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.5197 - Wer Ortho: 31.6471 - Wer: 0.3117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_steps: 100 - training_steps: 150 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:| | 0.8427 | 1.32 | 50 | 0.5401 | 35.9655 | 0.3566 | | 0.1982 | 2.63 | 100 | 0.5179 | 35.5336 | 0.3501 | | 0.0531 | 3.95 | 150 | 0.5197 | 31.6471 | 0.3117 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.1 - Tokenizers 0.13.3