--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - sentiment - text-classification - multilingual - modernbert - sentiment-analysis - product-reviews - place-reviews metrics: - f1 - precision - recall model-index: - name: clapAI/modernBERT-base-multilingual-sentiment results: [] datasets: - clapAI/MultiLingualSentiment language: - en - zh - vi - ko - ja - ar - de - es - fr - hi - id - it - ms - pt - ru - tr pipeline_tag: text-classification --- # clapAI/modernBERT-base-multilingual-sentiment ## Introduction **modernBERT-base-multilingual-sentiment** is a multilingual sentiment classification model, part of the [Multilingual-Sentiment](https://huggingface.co/collections/clapAI/multilingual-sentiment-677416a6b23e03f52cb6cc3f) collection. The model is fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) using the multilingual sentiment dataset [clapAI/MultiLingualSentiment](https://huggingface.co/datasets/clapAI/MultiLingualSentiment). Model supports multilingual sentiment classification across 16+ languages, including English, Vietnamese, Chinese, French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Arabic, and more. ## Evaluation & Performance After fine-tuning, the best model is loaded and evaluated on the `test` dataset from [clapAI/MultiLingualSentiment](https://huggingface.co/datasets/clapAI/MultiLingualSentiment) | Model | Pretrained Model | Parameters | F1-score | |:----------------------------------------------------------------------------------------------------------------:|:-----------------:|:----------:|:--------:| | [modernBERT-base-multilingual-sentiment](https://huggingface.co/clapAI/modernBERT-base-multilingual-sentiment) | ModernBERT-base | 150M | 80.16 | | [modernBERT-large-multilingual-sentiment](https://huggingface.co/clapAI/modernBERT-large-multilingual-sentiment) | ModernBERT-large | 396M | 81.4 | | [roberta-base-multilingual-sentiment](https://huggingface.co/clapAI/roberta-base-multilingual-sentiment) | XLM-roberta-base | 278M | 81.8 | | [roberta-large-multilingual-sentiment](https://huggingface.co/clapAI/roberta-large-multilingual-sentiment) | XLM-roberta-large | 560M | 82.6 | ## How to use ### Requirements Since **transformers** only supports the **ModernBERT** architecture from version `4.48.0.dev0`, use the following command to get the required version: ```bash pip install "git+https://github.com/huggingface/transformers.git@6e0515e99c39444caae39472ee1b2fd76ece32f1" --upgrade ``` Install **FlashAttention** to accelerate inference performance ```bash pip install flash-attn==2.7.2.post1 ``` ### Quick start ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model_id = "clapAI/modernBERT-base-multilingual-sentiment" # Load the tokenizer and model tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForSequenceClassification.from_pretrained(model_id, torch_dtype=torch.float16) model.to(device) model.eval() # Retrieve labels from the model's configuration id2label = model.config.id2label texts = [ # English { "text": "I absolutely love the new design of this app!", "label": "positive" }, { "text": "The customer service was disappointing.", "label": "negative" }, # Arabic { "text": "هذا المنتج رائع للغاية!", "label": "positive" }, { "text": "الخدمة كانت سيئة للغاية.", "label": "negative" }, # German { "text": "Ich bin sehr zufrieden mit dem Kauf.", "label": "positive" }, { "text": "Die Lieferung war eine Katastrophe.", "label": "negative" }, # Spanish { "text": "Este es el mejor libro que he leído.", "label": "positive" }, { "text": "El producto llegó roto y no funciona.", "label": "negative" }, # French { "text": "J'adore ce restaurant, la nourriture est délicieuse!", "label": "positive" }, { "text": "Le service était très lent et désagréable.", "label": "negative" }, # Indonesian { "text": "Saya sangat senang dengan pelayanan ini.", "label": "positive" }, { "text": "Makanannya benar-benar tidak enak.", "label": "negative" }, # Japanese { "text": "この製品は本当に素晴らしいです!", "label": "positive" }, { "text": "サービスがひどかったです。", "label": "negative" }, # Korean { "text": "이 제품을 정말 좋아해요!", "label": "positive" }, { "text": "고객 서비스가 정말 실망스러웠어요.", "label": "negative" }, # Russian { "text": "Этот фильм просто потрясающий!", "label": "positive" }, { "text": "Качество было ужасным.", "label": "negative" }, # Vietnamese { "text": "Tôi thực sự yêu thích sản phẩm này!", "label": "positive" }, { "text": "Dịch vụ khách hàng thật tệ.", "label": "negative" }, # Chinese { "text": "我非常喜欢这款产品!", "label": "positive" }, { "text": "质量真的很差。", "label": "negative" } ] for item in texts: text = item["text"] label = item["label"] inputs = tokenizer(text, return_tensors="pt").to(device) # Perform inference in inference mode with torch.inference_mode(): outputs = model(**inputs) predictions = outputs.logits.argmax(dim=-1) print(f"Text: {text} | Label: {label} | Prediction: {id2label[predictions.item()]}") ``` ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: ```yaml learning_rate: 5e-05 train_batch_size: 512 eval_batch_size: 512 seed: 42 distributed_type: multi-GPU num_devices: 2 gradient_accumulation_steps: 2 total_train_batch_size: 2048 total_eval_batch_size: 1024 optimizer: type: adamw_torch_fused betas: [ 0.9, 0.999 ] epsilon: 1e-08 optimizer_args: "No additional optimizer arguments" lr_scheduler: type: cosine warmup_ratio: 0.01 num_epochs: 5.0 mixed_precision_training: Native AMP ``` ### Framework versions ```plaintex transformers==4.48.0.dev0 torch==2.4.0+cu121 datasets==3.2.0 tokenizers==0.21.0 flash-attn==2.7.2.post1 ``` ## Citation If you find our project helpful, please star our repo and cite our work. Thanks! ```bibtex @misc{modernBERT-base-multilingual-sentiment, title={modernBERT-base-multilingual-sentiment: A Multilingual Sentiment Classification Model}, author={clapAI}, howpublished={\url{https://huggingface.co/clapAI/modernBERT-base-multilingual-sentiment}}, year={2025}, }