--- library_name: peft license: other base_model: Qwen/Qwen1.5-7B tags: - axolotl - generated_from_trainer model-index: - name: cbebf523-0842-45eb-9e17-512ed9d25cf9 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-7B bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2ba9fe8bb34145e7_train_data.json ds_type: json format: custom path: /workspace/input_data/2ba9fe8bb34145e7_train_data.json type: field_input: genre field_instruction: premise field_output: hypothesis format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: true fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 4 gradient_checkpointing: true group_by_length: false hub_model_id: clarxus/cbebf523-0842-45eb-9e17-512ed9d25cf9 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 5.0e-05 load_in_4bit: false load_in_8bit: false local_rank: 0 logging_steps: 3 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lr_scheduler: cosine max_steps: 100 micro_batch_size: 8 mlflow_experiment_name: /tmp/2ba9fe8bb34145e7_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: false tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: techspear-hub wandb_mode: online wandb_name: a19c1880-aeac-4066-9377-d92ea8d4386a wandb_project: Gradients-On-Seven wandb_run: your_name wandb_runid: a19c1880-aeac-4066-9377-d92ea8d4386a warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# cbebf523-0842-45eb-9e17-512ed9d25cf9 This model is a fine-tuned version of [Qwen/Qwen1.5-7B](https://huggingface.co/Qwen/Qwen1.5-7B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8447 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 100 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | No log | 0.0001 | 1 | 3.0755 | | 2.9992 | 0.0007 | 9 | 2.8091 | | 2.2559 | 0.0015 | 18 | 2.1556 | | 1.9053 | 0.0022 | 27 | 1.9718 | | 1.8025 | 0.0029 | 36 | 1.9067 | | 1.7893 | 0.0037 | 45 | 1.8848 | | 1.8401 | 0.0044 | 54 | 1.8674 | | 1.8888 | 0.0051 | 63 | 1.8559 | | 1.8951 | 0.0059 | 72 | 1.8496 | | 1.9286 | 0.0066 | 81 | 1.8465 | | 1.8533 | 0.0074 | 90 | 1.8449 | | 1.8273 | 0.0081 | 99 | 1.8447 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1