--- tags: - BeamRiderNoFrameskip-v4 - deep-reinforcement-learning - reinforcement-learning - custom-implementation library_name: cleanrl model-index: - name: DQN results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: BeamRiderNoFrameskip-v4 type: BeamRiderNoFrameskip-v4 metrics: - type: mean_reward value: 7155.60 +/- 2103.76 name: mean_reward verified: false --- # (CleanRL) **DQN** Agent Playing **BeamRiderNoFrameskip-v4** This is a trained model of a DQN agent playing BeamRiderNoFrameskip-v4. The model was trained by using [CleanRL](https://github.com/vwxyzjn/cleanrl) and the most up-to-date training code can be found [here](https://github.com/vwxyzjn/cleanrl/blob/master/cleanrl/dqn_atari.py). ## Command to reproduce the training ```bash curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari-seed1/raw/main/dqn.py curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari-seed1/raw/main/pyproject.toml curl -OL https://huggingface.co/cleanrl/BeamRiderNoFrameskip-v4-dqn_atari-seed1/raw/main/poetry.lock poetry install --all-extras python dqn_atari.py --track --capture-video --save-model --upload-model --hf-entity cleanrl --env-id BeamRiderNoFrameskip-v4 --seed 1 ``` # Hyperparameters ```python {'batch_size': 32, 'buffer_size': 1000000, 'capture_video': True, 'cuda': True, 'end_e': 0.01, 'env_id': 'BeamRiderNoFrameskip-v4', 'exp_name': 'dqn_atari', 'exploration_fraction': 0.1, 'gamma': 0.99, 'hf_entity': 'cleanrl', 'learning_rate': 0.0001, 'learning_starts': 80000, 'save_model': True, 'seed': 1, 'start_e': 1, 'target_network_frequency': 1000, 'torch_deterministic': True, 'total_timesteps': 10000000, 'track': True, 'train_frequency': 4, 'upload_model': True, 'wandb_entity': None, 'wandb_project_name': 'cleanRL'} ```