Text Classification
Transformers
PyTorch
roberta
Inference Endpoints
tobischimanski commited on
Commit
25cf57e
1 Parent(s): e345e1a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -0
README.md CHANGED
@@ -50,4 +50,8 @@ pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=
50
  for i, out in enumerate(tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True))):
51
  print(dataset["text"][i])
52
  print(out)
 
 
 
 
53
  ```
 
50
  for i, out in enumerate(tqdm(pipe(KeyDataset(dataset, "text"), padding=True, truncation=True))):
51
  print(dataset["text"][i])
52
  print(out)
53
+
54
+ ### IMPORTANT REMARK: It is highly recommended to use a prior classification step before applying ClimateBERT-NetZero.
55
+ ### Establish a climate context with "climatebert/distilroberta-base-climate-detector" for paragraphs
56
+ ### or "ESGBERT/EnvironmentalBERT-environmental" for sentences and then label the data with ClimateBERT-NetZero.
57
  ```