--- library_name: transformers license: other base_model: NousResearch/Meta-Llama-3-8B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: sft results: [] datasets: - clinno/iplaw20240808-json --- # sft This model is a fine-tuned version of [NousResearch/Meta-Llama-3-8B-Instruct](https://huggingface.co/NousResearch/Meta-Llama-3-8B-Instruct) on the identity and the iplaw20240808 datasets. It achieves the following results on the evaluation set: - Loss: 1.0843 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 9.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.3784 | 0.8469 | 500 | 1.4012 | | 1.1764 | 1.6938 | 1000 | 1.2227 | | 0.9808 | 2.5408 | 1500 | 1.1500 | | 0.9778 | 3.3877 | 2000 | 1.1205 | | 0.8815 | 4.2346 | 2500 | 1.0940 | | 0.8159 | 5.0815 | 3000 | 1.0748 | | 0.8317 | 5.9284 | 3500 | 1.0829 | | 0.7269 | 6.7754 | 4000 | 1.0812 | | 0.7372 | 7.6223 | 4500 | 1.0817 | | 0.7366 | 8.4692 | 5000 | 1.0842 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 2.21.0 - Tokenizers 0.19.1