--- library_name: peft language: - ms license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - clt013/malay-speech-3k-rows-dataset_v2 model-index: - name: Whisper Small FT Malay - CLT013 results: [] --- # Whisper Small FT Malay - CLT013 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Malay Speech 3k dataset. It achieves the following results on the evaluation set: - Loss: 0.8613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-------:|:----:|:---------------:| | 2.1842 | 0.3731 | 100 | 0.8172 | | 0.7488 | 0.7463 | 200 | 0.8014 | | 0.6424 | 1.1194 | 300 | 0.8136 | | 0.5234 | 1.4925 | 400 | 0.7511 | | 0.4951 | 1.8657 | 500 | 0.8203 | | 0.3835 | 2.2388 | 600 | 0.8191 | | 0.3519 | 2.6119 | 700 | 0.8001 | | 0.3868 | 2.9851 | 800 | 0.8011 | | 0.2568 | 3.3582 | 900 | 0.8630 | | 0.2781 | 3.7313 | 1000 | 0.8269 | | 0.2535 | 4.1045 | 1100 | 0.8612 | | 0.2105 | 4.4776 | 1200 | 0.8486 | | 0.2104 | 4.8507 | 1300 | 0.8367 | | 0.1726 | 5.2239 | 1400 | 0.8692 | | 0.1672 | 5.5970 | 1500 | 0.8483 | | 0.1641 | 5.9701 | 1600 | 0.8443 | | 0.1186 | 6.3433 | 1700 | 0.9531 | | 0.1261 | 6.7164 | 1800 | 0.8578 | | 0.1211 | 7.0896 | 1900 | 0.8922 | | 0.0962 | 7.4627 | 2000 | 0.9107 | | 0.1188 | 7.8358 | 2100 | 0.8498 | | 0.0847 | 8.2090 | 2200 | 0.8554 | | 0.0802 | 8.5821 | 2300 | 0.9024 | | 0.0805 | 8.9552 | 2400 | 0.8649 | | 0.0559 | 9.3284 | 2500 | 0.8634 | | 0.053 | 9.7015 | 2600 | 0.8988 | | 0.0555 | 10.0746 | 2700 | 0.8657 | | 0.0415 | 10.4478 | 2800 | 0.8449 | | 0.0401 | 10.8209 | 2900 | 0.8658 | | 0.0318 | 11.1940 | 3000 | 0.8674 | | 0.0245 | 11.5672 | 3100 | 0.8491 | | 0.032 | 11.9403 | 3200 | 0.8694 | | 0.0186 | 12.3134 | 3300 | 0.8620 | | 0.0179 | 12.6866 | 3400 | 0.8555 | | 0.015 | 13.0597 | 3500 | 0.8730 | | 0.0176 | 13.4328 | 3600 | 0.8458 | | 0.0155 | 13.8060 | 3700 | 0.8454 | | 0.0121 | 14.1791 | 3800 | 0.8533 | | 0.0139 | 14.5522 | 3900 | 0.8604 | | 0.009 | 14.9254 | 4000 | 0.8676 | | 0.0095 | 15.2985 | 4100 | 0.8649 | | 0.0059 | 15.6716 | 4200 | 0.8728 | | 0.0065 | 16.0448 | 4300 | 0.8570 | | 0.0049 | 16.4179 | 4400 | 0.8521 | | 0.0042 | 16.7910 | 4500 | 0.8600 | | 0.0051 | 17.1642 | 4600 | 0.8741 | | 0.0037 | 17.5373 | 4700 | 0.8666 | | 0.0037 | 17.9104 | 4800 | 0.8691 | | 0.0029 | 18.2836 | 4900 | 0.8619 | | 0.0023 | 18.6567 | 5000 | 0.8603 | | 0.0019 | 19.0299 | 5100 | 0.8629 | | 0.0018 | 19.4030 | 5200 | 0.8608 | | 0.0018 | 19.7761 | 5300 | 0.8613 | ### Framework versions - PEFT 0.13.2 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1