cobrakenji
commited on
Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -6,7 +6,7 @@ tags:
|
|
6 |
- granite
|
7 |
- llama-cpp
|
8 |
- gguf-my-repo
|
9 |
-
base_model: ibm-granite/granite-34b-code-
|
10 |
datasets:
|
11 |
- bigcode/commitpackft
|
12 |
- TIGER-Lab/MathInstruct
|
@@ -88,29 +88,43 @@ model-index:
|
|
88 |
# cobrakenji/granite-34b-code-instruct-Q4_K_M-GGUF
|
89 |
This model was converted to GGUF format from [`ibm-granite/granite-34b-code-instruct`](https://huggingface.co/ibm-granite/granite-34b-code-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
90 |
Refer to the [original model card](https://huggingface.co/ibm-granite/granite-34b-code-instruct) for more details on the model.
|
91 |
-
## Use with llama.cpp
|
92 |
|
93 |
-
|
|
|
94 |
|
95 |
```bash
|
96 |
-
brew install
|
|
|
97 |
```
|
98 |
Invoke the llama.cpp server or the CLI.
|
99 |
|
100 |
-
CLI:
|
101 |
-
|
102 |
```bash
|
103 |
-
llama
|
104 |
```
|
105 |
|
106 |
-
Server:
|
107 |
-
|
108 |
```bash
|
109 |
-
llama-server --hf-repo cobrakenji/granite-34b-code-instruct-Q4_K_M-GGUF --
|
110 |
```
|
111 |
|
112 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
113 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
```
|
115 |
-
|
116 |
```
|
|
|
6 |
- granite
|
7 |
- llama-cpp
|
8 |
- gguf-my-repo
|
9 |
+
base_model: ibm-granite/granite-34b-code-instruct
|
10 |
datasets:
|
11 |
- bigcode/commitpackft
|
12 |
- TIGER-Lab/MathInstruct
|
|
|
88 |
# cobrakenji/granite-34b-code-instruct-Q4_K_M-GGUF
|
89 |
This model was converted to GGUF format from [`ibm-granite/granite-34b-code-instruct`](https://huggingface.co/ibm-granite/granite-34b-code-instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
|
90 |
Refer to the [original model card](https://huggingface.co/ibm-granite/granite-34b-code-instruct) for more details on the model.
|
|
|
91 |
|
92 |
+
## Use with llama.cpp
|
93 |
+
Install llama.cpp through brew (works on Mac and Linux)
|
94 |
|
95 |
```bash
|
96 |
+
brew install llama.cpp
|
97 |
+
|
98 |
```
|
99 |
Invoke the llama.cpp server or the CLI.
|
100 |
|
101 |
+
### CLI:
|
|
|
102 |
```bash
|
103 |
+
llama --hf-repo cobrakenji/granite-34b-code-instruct-Q4_K_M-GGUF --hf-file granite-34b-code-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
|
104 |
```
|
105 |
|
106 |
+
### Server:
|
|
|
107 |
```bash
|
108 |
+
llama-server --hf-repo cobrakenji/granite-34b-code-instruct-Q4_K_M-GGUF --hf-file granite-34b-code-instruct-q4_k_m.gguf -c 2048
|
109 |
```
|
110 |
|
111 |
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
|
112 |
|
113 |
+
Step 1: Clone llama.cpp from GitHub.
|
114 |
+
```
|
115 |
+
git clone https://github.com/ggerganov/llama.cpp
|
116 |
+
```
|
117 |
+
|
118 |
+
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
119 |
+
```
|
120 |
+
cd llama.cpp && LLAMA_CURL=1 make
|
121 |
+
```
|
122 |
+
|
123 |
+
Step 3: Run inference through the main binary.
|
124 |
+
```
|
125 |
+
./main --hf-repo cobrakenji/granite-34b-code-instruct-Q4_K_M-GGUF --hf-file granite-34b-code-instruct-q4_k_m.gguf -p "The meaning to life and the universe is"
|
126 |
+
```
|
127 |
+
or
|
128 |
```
|
129 |
+
./server --hf-repo cobrakenji/granite-34b-code-instruct-Q4_K_M-GGUF --hf-file granite-34b-code-instruct-q4_k_m.gguf -c 2048
|
130 |
```
|