codelion commited on
Commit
8df12a4
·
verified ·
1 Parent(s): ecc3639

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +112 -196
README.md CHANGED
@@ -1,199 +1,115 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: apache-2.0
3
+ base_model:
4
+ - answerdotai/ModernBERT-large
5
+ datasets:
6
+ - codelion/optillm-router-dataset
7
  ---
8
 
9
+ # How to use?
10
+
11
+ This model is used in [optillm](https://github.com/codelion/optillm) to route between the various approaches based on the prompt.
12
+
13
+ To use the model with optillm you can just prepend `router` to the model name. E.g. if we set `router-gpt-4o-mini` as the model, it will use the `gpt-4o-mini` as the base model.
14
+
15
+ Otherwise, refer to the code in [router-plugin](https://github.com/codelion/optillm/blob/main/optillm/plugins/router_plugin.py) to see how to use this model for classification.
16
+
17
+ # Usage
18
+
19
+ To use the model directly you will need to use our `OptILMClassifier` class as we added additional layers to the base model. The additional
20
+ `effort_encoder` is used to take into account the number of tokens a given approach consumes. Also, note
21
+ the mapping of the returned index to the `APPROACHES` list as shown below.
22
+
23
+ ```python
24
+ import torch
25
+ import torch.nn as nn
26
+ import torch.nn.functional as F
27
+ from transformers import AutoModel, AutoTokenizer, AutoConfig
28
+ from huggingface_hub import hf_hub_download
29
+ from safetensors import safe_open
30
+ from safetensors.torch import load_model
31
+ from transformers import AutoTokenizer, AutoModel
32
+
33
+ # Constants
34
+ MAX_LENGTH = 1024
35
+ APPROACHES = ["none", "mcts", "bon", "moa", "rto", "z3", "self_consistency", "pvg", "rstar", "cot_reflection", "plansearch", "leap", "re2"]
36
+ BASE_MODEL = "answerdotai/ModernBERT-large"
37
+ OPTILLM_MODEL_NAME = "codelion/optillm-modernbert-large"
38
+
39
+ class OptILMClassifier(nn.Module):
40
+ def __init__(self, base_model, num_labels):
41
+ super().__init__()
42
+ self.base_model = base_model
43
+ self.effort_encoder = nn.Sequential(
44
+ nn.Linear(1, 64),
45
+ nn.ReLU(),
46
+ nn.Linear(64, 64),
47
+ nn.ReLU()
48
+ )
49
+ self.classifier = nn.Linear(base_model.config.hidden_size + 64, num_labels)
50
+
51
+ def forward(self, input_ids, attention_mask, effort):
52
+ outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
53
+ pooled_output = outputs.last_hidden_state[:, 0] # Shape: (batch_size, hidden_size)
54
+ effort_encoded = self.effort_encoder(effort.unsqueeze(1)) # Shape: (batch_size, 64)
55
+ combined_input = torch.cat((pooled_output, effort_encoded), dim=1)
56
+ logits = self.classifier(combined_input)
57
+ return logits
58
+
59
+ def load_optillm_model():
60
+ device = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu")
61
+ # Load the base model
62
+ base_model = AutoModel.from_pretrained(BASE_MODEL)
63
+ # Create the OptILMClassifier
64
+ model = OptILMClassifier(base_model, num_labels=len(APPROACHES))
65
+ model.to(device)
66
+ # Download the safetensors file
67
+ safetensors_path = hf_hub_download(repo_id=OPTILLM_MODEL_NAME, filename="model.safetensors")
68
+ # Load the state dict from the safetensors file
69
+ load_model(model, safetensors_path)
70
+
71
+ tokenizer = AutoTokenizer.from_pretrained(OPTILLM_MODEL_NAME)
72
+ return model, tokenizer, device
73
+
74
+ def preprocess_input(tokenizer, system_prompt, initial_query):
75
+ combined_input = f"{system_prompt}\n\nUser: {initial_query}"
76
+ encoding = tokenizer.encode_plus(
77
+ combined_input,
78
+ add_special_tokens=True,
79
+ max_length=MAX_LENGTH,
80
+ padding='max_length',
81
+ truncation=True,
82
+ return_attention_mask=True,
83
+ return_tensors='pt'
84
+ )
85
+ return encoding['input_ids'], encoding['attention_mask']
86
+
87
+ def predict_approach(model, input_ids, attention_mask, device, effort=0.7):
88
+ model.eval()
89
+ with torch.no_grad():
90
+ input_ids = input_ids.to(device)
91
+ attention_mask = attention_mask.to(device)
92
+ effort_tensor = torch.tensor([effort], dtype=torch.float).to(device)
93
+
94
+ logits = model(input_ids, attention_mask=attention_mask, effort=effort_tensor)
95
+ probabilities = F.softmax(logits, dim=1)
96
+ predicted_approach_index = torch.argmax(probabilities, dim=1).item()
97
+ confidence = probabilities[0][predicted_approach_index].item()
98
+
99
+ return APPROACHES[predicted_approach_index], confidence
100
+ ```
101
+
102
+ You can now use the `predict_approach` method to get the predicted approach as follows:
103
+
104
+ ```python
105
+ # Load the trained model
106
+ router_model, tokenizer, device = load_optillm_model()
107
+
108
+ # Preprocess the input
109
+ input_ids, attention_mask = preprocess_input(tokenizer, system_prompt, initial_query)
110
+
111
+ # Predict the best approach
112
+ predicted_approach, _ = predict_approach(router_model, input_ids, attention_mask, device)
113
+
114
+ print(f"Router predicted approach: {predicted_approach}")
115
+ ```