Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,115 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
[
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
[
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
base_model:
|
4 |
+
- answerdotai/ModernBERT-large
|
5 |
+
datasets:
|
6 |
+
- codelion/optillm-router-dataset
|
7 |
---
|
8 |
|
9 |
+
# How to use?
|
10 |
+
|
11 |
+
This model is used in [optillm](https://github.com/codelion/optillm) to route between the various approaches based on the prompt.
|
12 |
+
|
13 |
+
To use the model with optillm you can just prepend `router` to the model name. E.g. if we set `router-gpt-4o-mini` as the model, it will use the `gpt-4o-mini` as the base model.
|
14 |
+
|
15 |
+
Otherwise, refer to the code in [router-plugin](https://github.com/codelion/optillm/blob/main/optillm/plugins/router_plugin.py) to see how to use this model for classification.
|
16 |
+
|
17 |
+
# Usage
|
18 |
+
|
19 |
+
To use the model directly you will need to use our `OptILMClassifier` class as we added additional layers to the base model. The additional
|
20 |
+
`effort_encoder` is used to take into account the number of tokens a given approach consumes. Also, note
|
21 |
+
the mapping of the returned index to the `APPROACHES` list as shown below.
|
22 |
+
|
23 |
+
```python
|
24 |
+
import torch
|
25 |
+
import torch.nn as nn
|
26 |
+
import torch.nn.functional as F
|
27 |
+
from transformers import AutoModel, AutoTokenizer, AutoConfig
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
from safetensors import safe_open
|
30 |
+
from safetensors.torch import load_model
|
31 |
+
from transformers import AutoTokenizer, AutoModel
|
32 |
+
|
33 |
+
# Constants
|
34 |
+
MAX_LENGTH = 1024
|
35 |
+
APPROACHES = ["none", "mcts", "bon", "moa", "rto", "z3", "self_consistency", "pvg", "rstar", "cot_reflection", "plansearch", "leap", "re2"]
|
36 |
+
BASE_MODEL = "answerdotai/ModernBERT-large"
|
37 |
+
OPTILLM_MODEL_NAME = "codelion/optillm-modernbert-large"
|
38 |
+
|
39 |
+
class OptILMClassifier(nn.Module):
|
40 |
+
def __init__(self, base_model, num_labels):
|
41 |
+
super().__init__()
|
42 |
+
self.base_model = base_model
|
43 |
+
self.effort_encoder = nn.Sequential(
|
44 |
+
nn.Linear(1, 64),
|
45 |
+
nn.ReLU(),
|
46 |
+
nn.Linear(64, 64),
|
47 |
+
nn.ReLU()
|
48 |
+
)
|
49 |
+
self.classifier = nn.Linear(base_model.config.hidden_size + 64, num_labels)
|
50 |
+
|
51 |
+
def forward(self, input_ids, attention_mask, effort):
|
52 |
+
outputs = self.base_model(input_ids=input_ids, attention_mask=attention_mask)
|
53 |
+
pooled_output = outputs.last_hidden_state[:, 0] # Shape: (batch_size, hidden_size)
|
54 |
+
effort_encoded = self.effort_encoder(effort.unsqueeze(1)) # Shape: (batch_size, 64)
|
55 |
+
combined_input = torch.cat((pooled_output, effort_encoded), dim=1)
|
56 |
+
logits = self.classifier(combined_input)
|
57 |
+
return logits
|
58 |
+
|
59 |
+
def load_optillm_model():
|
60 |
+
device = torch.device("mps" if torch.backends.mps.is_available() else "cuda" if torch.cuda.is_available() else "cpu")
|
61 |
+
# Load the base model
|
62 |
+
base_model = AutoModel.from_pretrained(BASE_MODEL)
|
63 |
+
# Create the OptILMClassifier
|
64 |
+
model = OptILMClassifier(base_model, num_labels=len(APPROACHES))
|
65 |
+
model.to(device)
|
66 |
+
# Download the safetensors file
|
67 |
+
safetensors_path = hf_hub_download(repo_id=OPTILLM_MODEL_NAME, filename="model.safetensors")
|
68 |
+
# Load the state dict from the safetensors file
|
69 |
+
load_model(model, safetensors_path)
|
70 |
+
|
71 |
+
tokenizer = AutoTokenizer.from_pretrained(OPTILLM_MODEL_NAME)
|
72 |
+
return model, tokenizer, device
|
73 |
+
|
74 |
+
def preprocess_input(tokenizer, system_prompt, initial_query):
|
75 |
+
combined_input = f"{system_prompt}\n\nUser: {initial_query}"
|
76 |
+
encoding = tokenizer.encode_plus(
|
77 |
+
combined_input,
|
78 |
+
add_special_tokens=True,
|
79 |
+
max_length=MAX_LENGTH,
|
80 |
+
padding='max_length',
|
81 |
+
truncation=True,
|
82 |
+
return_attention_mask=True,
|
83 |
+
return_tensors='pt'
|
84 |
+
)
|
85 |
+
return encoding['input_ids'], encoding['attention_mask']
|
86 |
+
|
87 |
+
def predict_approach(model, input_ids, attention_mask, device, effort=0.7):
|
88 |
+
model.eval()
|
89 |
+
with torch.no_grad():
|
90 |
+
input_ids = input_ids.to(device)
|
91 |
+
attention_mask = attention_mask.to(device)
|
92 |
+
effort_tensor = torch.tensor([effort], dtype=torch.float).to(device)
|
93 |
+
|
94 |
+
logits = model(input_ids, attention_mask=attention_mask, effort=effort_tensor)
|
95 |
+
probabilities = F.softmax(logits, dim=1)
|
96 |
+
predicted_approach_index = torch.argmax(probabilities, dim=1).item()
|
97 |
+
confidence = probabilities[0][predicted_approach_index].item()
|
98 |
+
|
99 |
+
return APPROACHES[predicted_approach_index], confidence
|
100 |
+
```
|
101 |
+
|
102 |
+
You can now use the `predict_approach` method to get the predicted approach as follows:
|
103 |
+
|
104 |
+
```python
|
105 |
+
# Load the trained model
|
106 |
+
router_model, tokenizer, device = load_optillm_model()
|
107 |
+
|
108 |
+
# Preprocess the input
|
109 |
+
input_ids, attention_mask = preprocess_input(tokenizer, system_prompt, initial_query)
|
110 |
+
|
111 |
+
# Predict the best approach
|
112 |
+
predicted_approach, _ = predict_approach(router_model, input_ids, attention_mask, device)
|
113 |
+
|
114 |
+
print(f"Router predicted approach: {predicted_approach}")
|
115 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|