--- language: - en license: llama2 library_name: transformers tags: - CodeMate - Code - CodeLLaMa pipeline_tag: text-generation model-index: - name: CodeMate-v0.1 results: - task: type: text-generation dataset: name: HumanEval type: openai_humaneval metrics: - type: pass@1 value: 74.9% name: pass@1 verified: false - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 55.55 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=codemateai/CodeMate-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 78.03 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=codemateai/CodeMate-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 55.31 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=codemateai/CodeMate-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 48.64 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=codemateai/CodeMate-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 72.61 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=codemateai/CodeMate-v0.1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 40.18 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=codemateai/CodeMate-v0.1 name: Open LLM Leaderboard --- # **CodeMate-v0.1** CodeMate-v0.1 is an intelligent programming assistant developed by [CodeMate](https://codemate.ai). This model aims to assist users in generating high-quality code solutions for programming problems. Please note that this model is currently in version 0.1. ## Model Details - **Training Data:** Exclusively fine-tuned on a proprietary dataset of 1.8 billion tokens of high-quality programming problems and solutions. - The dataset was generated manually and is internal to CodeMate. - **Training Techniques:** The model was fine-tuned using Flash Attention 2, trained over 15 hours on 40 A100-80GB GPUs. - A sequence length of 8096 tokens was used during training. - **Multilingual Support:** CodeMate-v0.1 is proficient in multiple programming languages, including Python, C/C++, TypeScript, Java, and more. ## How to Get Started with the Model Make sure to install Transformers from the main git branch: ```bash pip install git+https://github.com/huggingface/transformers.git ``` ## How to Prompt the Model This model accepts prompts in the Alpaca/Vicuna instruction format. For example: ```markdown ### System Prompt You are an intelligent programming assistant. ### User Message Implement a linked list in C++ ### Assistant ... ``` ## Load the Model: To load the model, utilize the following Python script: ```python from transformers import AutoTokenizer, AutoModelForCausalLM # Initialize the model model_path = "codemateai/CodeMate-v0.1" model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_path) # ... generate response ... ``` ## Bias, Risks, and Limitations This model has undergone very limited testing. CodeMate recommends additional safety testing before any real-world deployments. For more information and updates, visit the [CodeMate website](https://codemate.ai). # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_codemateai__CodeMate-v0.1) | Metric |Value| |---------------------------------|----:| |Avg. |58.39| |AI2 Reasoning Challenge (25-Shot)|55.55| |HellaSwag (10-Shot) |78.03| |MMLU (5-Shot) |55.31| |TruthfulQA (0-shot) |48.64| |Winogrande (5-shot) |72.61| |GSM8k (5-shot) |40.18|