Updated README.md to include serving command and inference speed.
Browse files
README.md
CHANGED
@@ -9,10 +9,17 @@ pipeline_tag: text-generation
|
|
9 |
library_name: transformers
|
10 |
---
|
11 |
# DeepSeek R1 AWQ
|
12 |
-
AWQ of
|
13 |
|
14 |
-
This quant modified some of the model code to fix
|
15 |
|
16 |
-
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
|
|
|
|
|
|
9 |
library_name: transformers
|
10 |
---
|
11 |
# DeepSeek R1 AWQ
|
12 |
+
AWQ of DeepSeek R1.
|
13 |
|
14 |
+
This quant modified some of the model code to fix an overflow issue when using float16.
|
15 |
|
16 |
+
To serve using vLLM with 8x 80GB GPUs, use the following command:
|
17 |
+
```sh
|
18 |
+
python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --trust-remote-code --tensor-parallel-size 8 --quantization moe_wna16 --gpu-memory-utilization 0.97 --kv-cache-dtype fp8_e5m2 --calculate-kv-scales --served-model-name deepseek-reasoner --model cognitivecomputations/DeepSeek-R1-AWQ
|
19 |
+
```
|
20 |
+
The max model length flag ensures that KV cache usage won't be higher than available memory, the `moe_wna16` kernel doubles the inference speed, but you must build vLLM from source as of 2025/2/3. \
|
21 |
+
You can download the wheel I built for PyTorch 2.6, Python 3.12 by clicking [here](https://huggingface.co/x2ray/wheels/resolve/main/vllm-0.7.1.dev69%2Bg4f4d427a.d20220101.cu126-cp312-cp312-linux_x86_64.whl).
|
22 |
|
23 |
+
Inference speed with batch size 1 and short prompt:
|
24 |
+
- 8x H100: 34 TPS
|
25 |
+
- 8x A100: 27 TPS
|