v2ray commited on
Commit
524e5e5
·
verified ·
1 Parent(s): 534d263

Updated README.md to include serving command and inference speed.

Browse files
Files changed (1) hide show
  1. README.md +11 -4
README.md CHANGED
@@ -9,10 +9,17 @@ pipeline_tag: text-generation
9
  library_name: transformers
10
  ---
11
  # DeepSeek R1 AWQ
12
- AWQ of the DeepSeek R1 model.
13
 
14
- This quant modified some of the model code to fix the overflow issue when using float16.
15
 
16
- Tested on vLLM with 8x H100, inference speed 5 tokens per second with batch size 1 and short prompt, 12 tokens per second when using `moe_wna16` kernel.
 
 
 
 
 
17
 
18
- If you are serving with vLLM, please either add `--dtype float16` or use the new `moe_wna16` kernel by using `--quantization moe_wna16`.
 
 
 
9
  library_name: transformers
10
  ---
11
  # DeepSeek R1 AWQ
12
+ AWQ of DeepSeek R1.
13
 
14
+ This quant modified some of the model code to fix an overflow issue when using float16.
15
 
16
+ To serve using vLLM with 8x 80GB GPUs, use the following command:
17
+ ```sh
18
+ python -m vllm.entrypoints.openai.api_server --host 0.0.0.0 --port 12345 --max-model-len 65536 --trust-remote-code --tensor-parallel-size 8 --quantization moe_wna16 --gpu-memory-utilization 0.97 --kv-cache-dtype fp8_e5m2 --calculate-kv-scales --served-model-name deepseek-reasoner --model cognitivecomputations/DeepSeek-R1-AWQ
19
+ ```
20
+ The max model length flag ensures that KV cache usage won't be higher than available memory, the `moe_wna16` kernel doubles the inference speed, but you must build vLLM from source as of 2025/2/3. \
21
+ You can download the wheel I built for PyTorch 2.6, Python 3.12 by clicking [here](https://huggingface.co/x2ray/wheels/resolve/main/vllm-0.7.1.dev69%2Bg4f4d427a.d20220101.cu126-cp312-cp312-linux_x86_64.whl).
22
 
23
+ Inference speed with batch size 1 and short prompt:
24
+ - 8x H100: 34 TPS
25
+ - 8x A100: 27 TPS